What’s New in Sockeye?

Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton, Matt Post, Daniel Vidal, Kellen Sunderland

github.com/awslabs/sockeye
Sockeye NMT Toolkit

Sockeye is:
- A production-ready framework for training state-of-the-art models
- A flexible experimentation platform for researchers

Motivation: rapid evolution of Neural MT—different toolkits with different features
- No single toolkit with everything we need at Amazon
- Nothing mature for MXNet, our framework of choice

Decision: build such a toolkit
- Highly scalable (multiple GPUs, large data)
- Free and open source software (Apache 2.0)

Named after the Sockeye salmon found in the Northern Pacific Ocean
Quick Start
A translation system in 3 slides
Sequence-to-Sequence Modeling

Language model **conditioned on source sentence** $x = x_1, \ldots, x_m$:

$$p(y|x) = \prod_{t=1}^{n} p(y_t|y_{1:t-1}, x)$$

Encode source sentence

Decode target sentence

Attention connects states across steps

Many instantiations:
- Recurrent
- Convolutional
- Self-attentional
Data Pre-Processing

Given raw parallel text:

The shares closed almost unchanged at 187.35 dollars.
The question comes alone: Collserola? Park or mountain?

Step 1 – Tokenize:

The shares closed almost unchanged at 187.35 dollars.
The question comes alone: Collserola? Park or mountain?

Step 2 – Sub-word encode:

The shares closed almost unchanged at 187.35 dollars.
The question comes alone: Collserola? Park or mountain?

Ready for training!
Running Sockeye

Install Sockeye:

```
pip install sockeye
```

Train with default settings:

```
python -m sockeye.train \
  --source train-corpus.de \
  --target train-corpus.en \
  --validation-source dev-corpus.de \
  --validation-target dev-corpus.en \
  --output model.de-en
```

Decode with default settings:

```
python -m sockeye.translate \
  --models model.de-en
```

Customization?
Architectures & Features

Customizing translation systems
Base Architectures

Sockeye supports 3 prominent architectures:
• Mix and match with --encoder and --decoder options

Attentional Recurrent
[Bahdanau et al., 2014, Luong et al., 2015]

Fully Convolutional
[Gehring et al., 2017]

Self-Attentional Transformer
[Vaswani et al., 2017]
Training

Recommended model training recipe:

• Adam optimizer with learning rate scheduler
• Learning rate reduces when dev perplexity plateaus
• Decay resets model and optimizer parameters to best point
• Early stopping on extended dev perplexity plateau
• Average model parameters from best checkpoints
Training

Recommended model training recipe:

• Adam optimizer with learning rate scheduler
 - Optimizers: SGD, Nadam [Dozat, 2015], Eve [Koushik and Hayashi, 2016], etc.
 - Multi-GPU parallelization with sentence or word-based batching
 - Training resumption, sharding + serialized preprocessed data
 - Factored input [Sennrich and Haddow, 2016]

• Learning rate reduces when dev perplexity plateaus
 - Fixed-step, inverse-square-root [Vaswani et al., 2017] and more

• Decay resets model and optimizer parameters to best point
 - or restart optimizer (momentum) from zero [Denkowski and Neubig, 2017]

• Early stopping on extended dev perplexity plateau
 - or track BLEU, chrF [Popović, 2015], etc., or train for set number of updates

• Average model parameters from best checkpoints
Monitoring

Monitor training with standalone TensorBoard:

- BLEU, chrF, and perplexity curves for different model configurations
- Easily add and track new metrics
Decoding

Primary decoding features:

• Length-normalized beam search
 - Parametrized length penalty [Wu et al., 2016]
 - Target vocabulary selection [Devlin, 2017]

• Efficient GPU and CPU support
 - Length-based batch decoding

• Ensemble multiple models
 - Including different architectures

• Visualize system output
 - Attention matrices (alignments)
Decoding

Visualize beam search history
Recent Work

Newest features and updates
Performance Improvements

Transformer updates
• Default settings updated to strongest model from arXiv paper
• Refactoring to optimize computation graphs for attention, decoding
• Improved batching for beam search

[Preview] Update to MXNet 1.2
• New LayerNormalization operator saves GPU memory, ~20% speedup
• General speed optimizations for GPU and CPU, many from Amazon’s Core Machine Learning, AWS teams
New Features

“Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation” [Post and Vilar, 2018]

{ "text": "Einer soll ein hoch@@ rangi@@ ges Mitglied aus Berlin gewesen sein .",
"constraints": ["is said to", "powerful"] }

“Learning Hidden Unit Contribution for Adapting Neural Machine Translation Models” [Vilar 2018]

• Adapt models with small number of additional parameters, adaptation data
• Load/freeze different model parameters during training

[Coming Soon] FP16 support for training and inference

• 2X-3X reported speedup for deep learning applications on NVIDIA GPUs
Building NMT Systems

wget http://www.statmt.org/wmt13/training-parallel-europarl-v7.tgz
wget http://www.statmt.org/wmt13/training-parallel-commoncrawl.tgz
wget http://data.statmt.org/wmt17/translation-task/rapid2016.tgz
wget http://data.statmt.org/wmt17/translation-task/dev.tgz
wget http://data.statmt.org/wmt17/translation-task/test.tgz

tar xf training-parallel-europarl-v7.tgz
.tar xf training-parallel-commoncrawl.tgz
.tar xf training-parallel-nc-v12.tgz

python3 -m sockeye.train -s train.de.bpe -t train.en.bpe -vs dev.de.bpe -vt dev.en.bpe -o model --seed=1 --batch-type=word --batch-size=4092 --checkpoint-frequency=2000 --device-ids=4 ----embed-dropout=0.0 --encoder-transformer --decoder-transformer --num-layers=6:6 --transformer-model-size=512 --transformer-attention-heads=8 --transformer-feed-forward-num-hidden=2048 --

sockeye-autopilot --task wmt17_de_en --model transformer

commentary-v12.de-en.de.rapid2016.de-en.de >train.de
cat training/europarl/v7.de-en.commoncrawl.de-en.en training/news-
commentary-v12.de-en.de.rapid2016.de-en.de >train.en

stripsgml <dev/newstest2016-deen-src.de.sgm > dev.de
stripsgml <dev/newstest2016-deen-ref.en.sgm > dev.en
stripsgml <test/newstest2017-deen-src.de.sgm > test.de
stripsgml <test/newstest2017-deen-ref.en.sgm > test.en

./tokenizer.perl -l de <train.de >train.de.tok
./tokenizer.perl -l de <dev.de >dev.de.tok
./tokenizer.perl -l en <train.en >train.en.tok
./tokenizer.perl -l en <dev.en >dev.en.tok
./tokenizer.perl -l en <test.en >test.en.tok

cat train.de.tok train.en.tok | ./learn_bpe.py -s 3200 > codes

apply_bpe.py -c codes train.de.tok >train.de.tok.bpe
apply_bpe.py -c codes train.en.tok >train.en.tok.bpe

python3 -m sockeye.averange -n 8 --output=model/params.averange.best --strategy=best model
cat test.en | ./apply_bpe.py -c codes | python3 -m sockeye.translate --models=model --beam-size=5 --batch-size=32 --chunk-size=10000 --length-penalty-alpha=0.1 --length-penalty-beta=0.0 --max-output-length-num-stds=2 --bucket-width=10 | sed -u -r 's/[@()]/\g\g/'>test.out

python3 -m sockeye.evaluate --hypotheses=test.out --references=test.de >test.scores
Autopilot

sockeye-autopilot --task wmt17_de_en --model transformer
• Download and preprocesses data with Moses tokenizer, subword-nmt byte-pair encoding
• Train and evaluate translation model
• Log commands, intermediate files available as plain text

sockeye-autopilot --custom-task my_task --custom-train train.src train.trg
 --custom-dev dev.src dev.trg --custom-test test.src test.trg --model transformer
• Automatic training and evaluation on user data (raw, tokenized, or BPE)

sockeye-autopilot --task wmt17_de_en --model none
• Download and preprocess standard data set for other use
Development
Adding your code to Sockeye
Starting with [mxnet]

Fast and scalable deep learning framework
• Native support for parallelization of training
• Near linear speedup with multiple GPUs

Flexible programming model
• Imperative API (NumPy on GPUs)
• Symbolic API (computation graphs)

Officially supported by Amazon/AWS
• Quick start with Amazon Deep Learning AMI

Bindings for various languages (Python, C++, Scala, R, Julia, Perl)
MXNet Programming Models

Imperative

- Like NumPy on GPUs
  ```python
  from mxnet.ndarray import *
  x = zeros((64, 12))
  weights = zeros((128, 12))
  x = FullyConnected(x, weights, num_hidden=128)
  pred = SoftmaxActivation(x)
  pred = pred.asnumpy()
  ```

Symbolic

- Optimized computation graphs
  ```python
  from mxnet.symbol import *
  y = Variable('y')
  x = Variable('x')
  weights = Variable('w')
  x = FullyConnected(x, weights, num_hidden=128)
  pred = SoftmaxOutput(x, y)
  model = Module(pred)
  model.fit(…)
  model.forward_backward(data)
  ```
Implementation

Training - Symbolic:
- Unroll models through time to maximum sequence length
- Organize data into buckets of similar length
- One symbolic graph per bucket with shared memory and parameters

Inference - Symbolic and Imperative:
- Symbolic: encode source sequence
- Imperative: iteratively generate target
- Beam search decoder maintains & expands k-best hypotheses at each step until <EOS>
Developing Sockeye

Official Amazon software on GitHub
Developing Sockeye

Developer guidelines for reliable, understandable code:

- Python3 with type annotations, Sphinx-style doc strings
- Peer review and code documentation

```python
215  def split_heads(x: mx.sym.Symbol, depth_per_head: int, heads: int) -> mx.sym.Symbol:
216      """
217      Returns a symbol with head dimension folded into batch and depth divided by the number of heads.
218      """
219      # (batch, length, heads, depth_per_head)
220      x = mx.sym.reshape(data=x, shape=(0, -1, heads, depth_per_head))
221      # (batch, heads, length, depth/heads)
222      x = mx.sym.transpose(data=x, axes=(0, 2, 1, 3))
223      # (batch * heads, length, depth/heads)
224      return mx.sym.reshape(data=x, shape=(-3, -1, depth_per_head))
```
Developing Sockeye

Comprehensive automated testing

- Unit, integration, and system tests for all features
- Tests run automatically for each code change
Developing Sockeye

Public code review process—community feedback welcome!

Source factors #275

mjpast commented on Jan 18 • edited by flieber

Added source factors, as described in.

Linguistic Input Features Improve Neural Machine Translation.
Rico Sennrich & Barry Haddow

Source factors are enabled by passing --source-factors file1 [file2 ...] (-sf), where file1, etc. are token-parallel to the source (-s).
What’s New in Sockeye?

Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton, Matt Post, Daniel Vidal, Kellen Sunderland

github.com/awslabs/sockeye