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Abstract

We present Jane, RWTH’s hierarchical
phrase-based translation system, which
has been open sourced for the scientific
community. This system has been in de-
velopment at RWTH for the last two years
and has been successfully applied in dif-
ferent machine translation evaluations. It
includes extensions to the hierarchical ap-
proach developed by RWTH as well as
other research institutions. In this paper
we give an overview of its main features.

We also introduce a novel reordering
model for the hierarchical phrase-based
approach which further enhances transla-
tion performance, and analyze the effect
some recent extended lexicon models have
on the performance of the system.

1 Introduction

We present a new open source toolkit for hi-
erarchical phrase-based translation, as described
in (Chiang, 2007). The hierarchical phrase model
is an extension of the standard phrase model,
where the phrases are allowed to have “gaps”. In
this way, long-distance dependencies and reorder-
ings can be modelled in a consistent way. As in
nearly all current statistical approaches to machine
translation, this model is embedded in a log-linear
model combination.

RWTH has been developing this tool during
the last two years and it was used success-
fully in numerous machine translation evalua-
tions. It is developed in C++ with special at-
tention to clean code, extensibility and efficiency.
The toolkit is available under an open source
non-commercial license and downloadable from
http://www.hltpr.rwth-aachen.de/jane.

In this paper we give an overview of the main
features of the toolkit and introduce two new ex-

tensions to the hierarchical model. The first one
is an additional reordering model inspired by the
reordering widely used in phrase-based transla-
tion systems and the second one comprises two
extended lexicon models which further improve
translation performance.

2 Related Work

Jane implements many features presented in pre-
vious work developed both at RWTH and other
groups. As we go over the features of the system
we will provide the corresponding references.

Jane is not the first system of its kind, al-
though it provides some unique features. There
are other open source hierarchical decoders avail-
able. These include

• SAMT (Zollmann and Venugopal, 2006):
The original version is not maintained any
more and we had problems working on big
corpora. A new version which requires
Hadoop has just been released, however the
documentation is still missing.

• Joshua (Li et al., 2009): A decoder written
in Java by the John Hopkins University. This
project is the most similar to our own, how-
ever both were developed independently and
each one has some unique features. A brief
comparison between these two systems is in-
cluded in Section 5.1.

• Moses (Koehn et al., 2007): The de-facto
standard phrase-based translation decoder
has now been extended to support hierarchi-
cal translation. This is still in an experimental
branch, however.

3 Features

In this section we will only give a brief overview
of the features implemented in Jane. For de-
tailed explanation of previously published algo-
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rithms and methods, we refer to the given litera-
ture.

3.1 Search Algorithms

The search for the best translation proceeds in two
steps. First, a monolingual parsing of the input
sentence is carried out using the CYK+ algorithm
(Chappelier and Rajman, 1998), a generalization
of the CYK algorithm which relaxes the require-
ment for the grammar to be in Chomsky normal
form. From the CYK+ chart we extract a hyper-
graph representing the parsing space.

In a second step the translations are generated,
computing the language model scores in an inte-
grated fashion. Both the cube pruning and cube
growing algorithms (Huang and Chiang, 2007) are
implemented. For the latter case, the extensions
concerning the language model heuristics similar
to (Vilar and Ney, 2009) have also been included.

3.2 Language Models

Jane supports four formats for n-gram language
models:

• The ARPA format for language models. We
use the SRI toolkit (Stolcke, 2002) to support
this format.

• The binary language model format supported
by the SRI toolkit. This format allows for a
more efficient language model storage, which
reduces loading times. In order to reduce
memory consumption, the language model
can be reloaded for every sentence, filtering
the n-grams that will be needed for scoring
the possible translations. This format is spe-
cially useful for this case.

• Randomized LMs as described in (Talbot and
Osborne, 2007), using the open source im-
plementation made available by the authors
of the paper. This approach uses a space ef-
ficient but approximate representation of the
set of n-grams in the language model. In
particular the probability for unseen n-grams
may be overestimated.

• An in-house, exact representation format
with on-demand loading of n-grams, using
the internal prefix-tree implementation which
is also used for phrase storage (see also Sec-
tion 3.9).

Several language models (also of mixed formats)
can be used during search. Their scores are com-
bined in the log-linear framework.

3.3 Syntactic Features
Soft syntactic features comparable to (Vilar et al.,
2008) are implemented in the extraction step of
the toolkit. In search, they are considered as ad-
ditional feature functions of the translation rules.

The decoder is able to handle an arbitrary num-
ber of non-terminal symbols. The extraction has
been extended so that the extraction of SAMT-
rules is included (Zollmann and Venugopal, 2006)
but this approach is not fully supported (there
may be empty parses due to the extended num-
ber of non-terminals). We instead opted to sup-
port the generalization presented in (Venugopal et
al., 2009), where the information about the new
non-terminals is included as an additional feature
in the log-linear model.

In addition, dependency information in the
spirit of (Shen et al., 2008) is included. Jane fea-
tures models for string-to-dependency language
models and computes various scores based on the
well-formedness of the resulting dependency tree.

Jane supports the Stanford parsing format,1 but
can be easily extended to other parsers.

3.4 Additional Reordering Models
In the standard formulation of the hierarchical
phrase-based translation model two additional
rules are added:

S → 〈S∼0X∼1, S∼0X∼1〉
S → 〈X∼0, X∼0〉

(1)

This allows for a monotonic concatenation of
phrases, very much in the way monotonic phrase-
based translation is carried out.

It is a well-known fact that for phrase-based
translation, the use of additional reordering mod-
els is a key component, essential for achieving
good translation quality. In the hierarchical model,
the reordering is already integrated in the transla-
tion formalism, but there are still cases where the
required reorderings are not captured by the hier-
archical phrases alone.

The flexibility of the grammar formalism allows
us to add additional reordering models without the
need to explicitely modify the code for supporting
them. The most straightforward example would

1http://nlp.stanford.edu/software/lex-parser.shtml
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be to include the ITG-Reorderings (Wu, 1997), by
adding following rule

S → 〈S∼0S∼1, S∼1S∼0〉 (2)

We can also model other reordering constraints.
As an example, phrase-level IBM reordering con-
straints with a window length of 1 can be included
substituting the rules in Equation (1) with follow-
ing rules

S → 〈M∼0,M∼0〉
S → 〈M∼0S∼1,M∼0S∼1〉
S → 〈B∼0M∼1,M∼1B∼0〉
M → 〈X∼0, X∼0〉
M → 〈M∼0X∼1,M∼0X∼1〉
B → 〈X∼0, X∼0〉
B → 〈B∼0X∼1, X∼1B∼0〉

(3)

In these rules we have added two additional non-
terminals. The M non-terminal denotes a mono-
tonic block and the B non-terminal a back jump.
Actually both of them represent monotonic trans-
lations and the grammar could be simplified by
using only one of them. Separating them allows
for more flexibility, e.g. when restricting the jump
width, where we only have to restrict the maxi-
mum span width of the non-terminal B. These
rules can be generalized for other reordering con-
straints or window lengths.

Additionally distance-based costs can be com-
puted for these reorderings. To the best of our
knowledge, this is the first time such additional
reorderings have been applied to the hierarchical
phrase-based approach.

3.5 Extended Lexicon Models
We enriched Jane with the ability to score hy-
potheses with discriminative and trigger-based
lexicon models that use global source sentence
context and are capable of predicting context-
specific target words. This approach has recently
been shown to improve the translation results of
conventional phrase-based systems. In this sec-
tion, we briefly review the basic aspects of these
extended lexicon models. They are similar to
(Mauser et al., 2009), and we refer there for a more
detailed exposition on the training procedures and
results in conventional phrase-based decoding.

Note that the training for these models is not
distributed together with Jane.

3.5.1 Discriminative Word Lexicon
The first of the two lexicon models is denoted as
discriminative word lexicon (DWL) and acts as a
statistical classifier that decides whether a word
from the target vocabulary should be included in
a translation hypothesis. For that purpose, it con-
siders all the words from the source sentence, but
does not take any position information into ac-
count, i.e. it operates on sets, not on sequences or
even trees. The probability of a word being part
of the target sentence, given a set of source words,
are decomposed into binary features, one for each
source vocabulary entry. These binary features are
combined in a log-linear fashion with correspond-
ing feature weights. The discriminative word lex-
icon is trained independently for each target word
using the L-BFGS (Byrd et al., 1995) algorithm.
For regularization, Gaussian priors are utilized.

DWL model probabilities are computed as

p(e|f) =
∏

e∈VE

p(e−|f) ·
∏
e∈e

p(e+|f)
p(e−|f)

(4)

with VE being the target vocabulary, e the set of
target words in a sentence, and f the set of source
words, respectively. Here, the event e+ is used
when the target word e is included in the target
sentence and e− if not. As the left part of the prod-
uct in Equation (4) is constant given a source sen-
tence, it can be dropped, which enables us to score
partial hypotheses during search.

3.5.2 Triplet Lexicon
The second lexicon model we employ in Jane,
the triplet lexicon model, is in many aspects re-
lated to IBM model 1 (Brown et al., 1993), but
extends it with an additional word in the con-
ditioning part of the lexical probabilities. This
introduces a means for an improved representa-
tion of long-range dependencies in the data. Like
IBM model 1, the triplets are trained iteratively
with the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977). Jane implements
the so-called inverse triplet model p(e|f, f ′).

The triplet lexicon model score t(·) of the ap-
plication of a rule X → 〈α, β〉 where (α, β) is
a bilingual phrase pair that may contain symbols
from the non-terminal set is computed as

t(α, β, fJ
0 ) = (5)

−
∑

e

log

 2
J · (J + 1)

∑
j

∑
j′>j

p(e|fj , fj′)
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with e ranging over all terminal symbols in the tar-
get part β of the rule. The second sum selects all
words from the source sentence fJ

0 (including the
empty word that is denoted as f0 here). The third
sum incorporates the rest of the source sentence
right of the first triggering word. The order of
the triggers is not relevant because per definition
p(e|f, f ′) = p(e|f ′, f), i.e. the model is symmet-
ric. Non-terminals in β have to be skipped when
the rule is scored.

In Jane, we also implemented scoring for a vari-
ant of the triplet lexicon model called the path-
constrained (or path-aligned) triplet model. The
characteristic of path-constrained triplets is that
the first trigger f is restricted to the aligned target
word e. The second trigger f ′ is allowed to move
along the whole remaining source sentence. For
the training of the model, we use word alignment
information obtained by GIZA++ (Och and Ney,
2003). To be able to apply the model in search,
Jane has to be run with a phrase table that con-
tains word alignment for each phrase, too, with the
exception of phrases which are composed purely
of non-terminals. Jane’s phrase extraction can op-
tionally supply this information from the training
data.

(Hasan et al., 2008) and (Hasan and Ney, 2009)
employ similar techniques and provide some more
discussion on the path-aligned variant of the
model and other possible restrictions.

3.6 Forced Alignments

Jane has also preliminary support for forced align-
ments between a given source and target sentence.
Given a sentence in the source language and its
translation in the target language, we find the best
way the source sentence can be translated into
the given target sentence, using the available in-
ventory of phrases. This is needed for more ad-
vanced training approaches like the ones presented
in (Blunsom et al., 2008) or (Cmejrek et al., 2009).
As reported in these papers, due to the restrictions
in the phrase extraction process, not all sentences
in the training corpus can be aligned in this way.

3.7 Optimization Methods

Two method based on n-best for minimum error
rate training (MERT) of the parameters of the log-
linear model are included in Jane. The first one
is the procedure described in (Och, 2003), which
has become a standard in the machine translation

community. We use an in-house implementation
of the method.

The second one is the MIRA algorithm, first
applied for machine translation in (Chiang et al.,
2009). This algorithm is more adequate when the
number of parameters to optimize is large.

If the Numerical Recipes library (Press et al.,
2002) is available, an additional general purpose
optimization tool is also compiled. Using this
tool a single-best optimization procedure based on
the downhill simplex method (Nelder and Mead,
1965) is included. This method, however, can be
considered deprecated in favour of the above men-
tioned methods.

3.8 Parallelized operation

If the Sun Grid Engine2 is available, all operations
of Jane can be parallelized. For the extraction pro-
cess, the corpus is split into chunks (the granular-
ity being user-controlled) which are distributed in
the computer cluster. Count collection, marginal
computation and count normalization all happens
in an automatic and parallel manner.

For the translation process a batch job is started
on a number of computers. A server distributes the
sentences to translate to the computers that have
been made available to the translation job.

The optimization process also benefits from
the parallelized optimization. Additionally, for
the minimum error rate training methods, random
restarts may be performed on different computers
in a parallel fashion.

The same client-server infrastructure used for
parallel translation may also be reused for inter-
active systems. Although no code in this direction
is provided, one would only need to implement a
corresponding frontend which communicates with
the translation server (which may be located on an-
other machine).

3.9 Extensibility

One of the goals when implementing the toolkit
was to make it easy to extend it with new features.
For this, an abstract class was created which we
called secondary model. New models need only to
derive from this class and implement the abstract
methods for data reading and costs computation.
This allows for an encapsulation of the computa-
tions, which can be activated and deactivated on
demand. The models described in Sections 3.3

2http://www.sun.com/software/sge/
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through 3.5 are implemented in this way. We thus
try to achieve loose coupling in the implementa-
tion.

In addition a flexible prefix tree implementation
with on-demand loading capabilities is included as
part of the code. This class has been used for im-
plementing on-demand loading of phrases in the
spirit of (Zens and Ney, 2007) and the on-demand
n-gram format described in Section 3.2, in addi-
tion to some intermediate steps in the phrase ex-
traction process. The code may also be reused in
other, independent projects.

3.10 Code

The main core of Jane has been implemented in
C++. Our guideline was to write code that was
correct, maintainable and efficient. We tried to
achieve correctness by means of unit tests inte-
grated in the source as well as regression tests. We
also defined a set of coding guidelines, which we
try to enforce in order to have readable and main-
tainable code. Examples include using descriptive
variable names, appending an underscore to pri-
vate members of classes or having each class name
start with an uppercase letter while variable names
start with lowercase letters.

The code is documented at great length using
the doxygen system,3 and the filling up of the
missing parts is an ongoing effort. Every tool
comes with an extensive help functionality, and
the main tools also have their own man pages.

As for efficiency we always try to speed up the
code and reduce memory consumption by imple-
menting better algorithms. We try to avoid “dark
magic programming methods” and hard to follow
optimizations are only applied in critical parts of
the code. We try to document every such occur-
rence.

4 Experimental Results

In this section we will present some experimental
results obtained using Jane. We will pay special
attention to the performance of the new reordering
and lexicon models presented in this paper. We
will present results on three different large-scale
tasks and language pairs.

Additionally RWTH participated in this year’s
WMT evaluation, where Jane was one of the sub-
mitted systems. We refer to the system description
for supplementary experimental results.

3http://www.doxygen.org

dev test
System BLEU TER BLEU TER

Jane baseline 24.2 59.5 25.4 57.4
+ reordering 25.2 58.2 26.5 56.1

Table 1: Results for Europarl German-English
data. BLEU and TER results are in percentage.

4.1 Europarl Data

The first task is the Europarl as defined in the
Quaero project. The main part of the corpus in
this task consists of the Europarl corpus as used in
the WMT evaluation (Callison-Burch et al., 2009),
with some additional data collected in the scope of
the project.

We tried the reordering approach presented in
Section 3.4 on the German-English language pair.
The results are shown in Table 1. As can be seen
from these results, the additional reorderings ob-
tain nearly 1% improvement both in BLEU and
TER scores. Regrettably for this corpus the ex-
tended lexicon models did not bring any improve-
ments.

Table 2 shows the results for the French-English
language pair of the Europarl task. On this task
the extended lexicon models yield an improve-
ment over the baseline system of 0.9% in BLEU
and 0.9% in TER on the test set.

4.2 NIST Arabic-English

We also show results on the Arabic-English
NIST’08 task, using the NIST’06 set as develop-
ment set. It has been reported in other work that
the hierarchical system is not competitive with a
phrase-based system for this language pair (Birch
et al., 2009). We report the figures of our state-
of-the-art phrase-based system as comparison (de-
noted as PBT).

As can be seen from Table 3, the baseline
Jane system is in fact 0.6% worse in BLEU and
1.0% worse in TER than the baseline PBT sys-
tem. When we include the extended lexicon mod-
els we see that the difference in performance is re-
duced. For Jane the extended lexicon models give
an improvement of up to 1.9% in BLEU and 1.7%
in TER, respectively, bringing the system on par
with the PBT system extended with the same lex-
icon models, and obtaining an even slightly better
BLEU score.
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dev test

BLEU TER BLEU TER

Baseline 30.0 52.6 31.1 50.0

DWL 30.4 52.2 31.4 49.6

Triplets 30.4 52.0 31.7 49.4

path-constrained Triplets 30.3 52.1 31.6 49.3

DWL + Triplets 30.7 52.0 32.0 49.1

DWL + path-constrained Triplets 30.8 51.7 31.6 49.3

Table 2: Results for the French-English task. BLEU and TER results are in percentage.

dev (MT’06) test (MT’08)

Jane PBT Jane PBT

BLEU TER BLEU TER BLEU TER BLEU TER

Baseline 43.2 50.8 44.1 49.4 44.1 50.1 44.7 49.1

DWL 45.3 48.7 45.1 48.4 45.6 48.4 45.6 48.4

Triplets 44.4 49.1 44.6 49.2 45.3 48.8 44.9 49.0

path-constrained Triplets 44.3 49.4 44.7 49.1 44.9 49.3 45.3 48.7

DWL + Triplets 45.0 48.9 45.1 48.5 45.3 48.6 45.5 48.5

DWL + path-constrained Triplets 45.2 48.8 45.1 48.6 46.0 48.5 45.8 48.3

Table 3: Results for the Arabic-English task. BLEU and TER results are in percentage.

5 Discussion

We feel that the hierarchical phrase-based transla-
tion approach still shares some shortcomings con-
cerning lexical selection with conventional phrase-
based translation. Bilingual lexical context be-
yond the phrase boundaries is barely taken into
account by the base model. In particular, if only
one generic non-terminal is used, the selection of
a sub-phrase that fills the gap of a hierarchical
phrase is not affected by the words composing the
phrase it is embedded in – except for the language
model score. This shortcoming is one of the issues
syntactically motivated models try to address.

The extended lexicon models analyzed in this
work also try to address this issue. One can con-
sider that they complement the efforts that are be-
ing made on a deep structural level within the hi-
erarchical approach. Though they are trained on
surface forms only, without any syntactic informa-

tion, they still operate at a scope that exceeds the
capability of common feature sets of standard hi-
erarchical phrase-based SMT systems.

As the experiments in Section 4 show, the ef-
fect of these extended lexicon models is more im-
portant for the hierarchical phrase-based approach
than for the phrase-based approach. In our opinion
this is probably mainly due to the higher flexibil-
ity of the hierarchical system, both because of its
intrinsic nature and because of the higher number
of phrases extracted by the system. The scoring
of the phrases is still carried out by simple relative
frequencies, which seem to be insufficient. The
additional lexicon models seem to help in this re-
spect.

5.1 Short Comparison with Joshua
As mentioned in Section 2, Joshua is the most
similar decoder to our own. It was developed in
parallel at the Johns Hopkins University and it is
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System words/sec

Joshua 11.6
Jane cube prune 15.9
Jane cube grow 60.3

Table 4: Speed comparison Jane vs. Joshua. We
measure the translated words per second.

currently used by a number of groups around the
world.

Jane was started separately and independently.
In their basic working mode, both systems imple-
ment parsing using a synchronous grammar and
include language model information. Each of the
projects then progressed independently, most of
the features described in Section 3 being only
available in Jane.

Efficiency is one of the points where we think
Jane outperforms Joshua. One of the reasons can
well be the fact that it is written in C++ while
Joshua is written in Java. In order to compare run-
ning times we converted a grammar extracted by
Jane to Joshua’s format and adapted the parame-
ters accordingly. To the best of our knowledge we
configured both decoders to perform the same task
(cube pruning, 300-best generation, same pruning
parameters). Except for some minor differences4

the results were equal.
We tried this setup on the IWSLT’08 Arabic to

English translation task. The speed results (mea-
sured in translated words per second) can be seen
in Table 4. Jane operating with cube prune is
nearly 50% faster than Joshua, at the same level
of translation performance. If we switch to cube
grow, the speed difference is even bigger, with
a speedup of nearly 4 times. However this usu-
ally comes with a penalty in BLEU score (nor-
mally under 0.5% BLEU in our experience). This
increased speed can be specially interesting for
applications like interactive machine translation
or online translation services, where the response
time is critical and sometimes even more impor-
tant than a small (and often hardly noticeable) loss
in translation quality.

Another important point concerning efficiency
is the startup time. Thanks to the binary format
described in Section 3.9, there is virtually no delay

4E.g. the OOVs seem to be handled in a slightly different
way, as the placement was sometimes different.

in the loading of the phrase table in Jane.5 In fact
Joshua’s long phrase table loading times were the
main reason the performance measures were done
on a small corpus like IWSLT instead of one of the
large tasks described in Section 4.

We want to make clear that we did not go into
great depth in the workings of Joshua, just stayed
at the basic level described in the manual. This
tool is used also for large-scale evaluations and
hence there certainly are settings for dealing with
these big tasks. Therefore this comparison has to
be taken with a grain of salt.

We also want to stress that we explicitly chose
to leave translation results out of this comparison.
Several different components have great impact
on translation quality, including phrase extraction,
minimum error training and additional parameter
settings of the decoder. As we pointed out we
do not have the expertise in Joshua to perform all
these tasks in an optimal way, and for that reason
we did not include such a comparison. However,
both JHU and RWTH participated in this year’s
WMT evaluation, where the systems, applied by
their respective authors, can be directly compared.

And in no way do we see Joshua and Jane as
“competing” systems. Having different systems
is always enriching, and particularly as system
combination shows great improvements in trans-
lation quality, having several alternative systems
can only be considered a positive situation.

6 Licensing

Jane is distributed under a custom open source
license. This includes free usage for non-
commercial purposes as long as any changes made
to the original software are published under the
terms of the same license. The exact formulation
is available at the download page for Jane.

7 Conclusion

With Jane, we release a state-of-the-art hi-
erarchical toolkit to the scientific community
and hope to provide a good starting point for
fellow researchers, allowing them to have a
solid system even if the research field is new
to them. It is available for download from
http://www.hltpr.rwth-aachen.de/jane. The
system in its current state is stable and efficient
enough to handle even large-scale tasks such as

5There is, however, still some delay when loading the lan-
guage model for some of the supported formats.
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the WMT and NIST evaluations, while producing
highly competitive results.

Moreover, we presented additional reordering
and lexicon models that further enhance the per-
formance of the system.

And in case you are wondering, Jane is Just an
Acronym, Nothing Else. The name comes from
the character in the Ender’s Game series (Card,
1986).
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