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Abstract

DFKI participated in the shared transla-
tion task of WMT 2015 with the German-
English language pair in each translation
direction. The submissions were gener-
ated using an experimental hybrid system
based on three systems: a statistical Moses
system, a commercial rule-based system,
and a serial coupling of the two where
the output of the rule-based system is fur-
ther translated by Moses trained on paral-
lel text consisting of the rule-based output
and the original target language. The out-
puts of three systems are combined using
two methods: (a) an empirical selection
mechanism based on grammatical features
(primary submission) and (b) IBM1 mod-
els based on POS 4-grams (contrastive sub-
mission).

1 Introduction

The system architecture we will describe has been
developed within the QTLEAP project.1 The goal
of the project is to explore different combinations
of shallow and deep processing for improving MT

quality. The system presented in this paper is the
first of a series of MT system prototypes developed
in the project. Figure 1 shows the overall architec-
ture that includes:

• A statistical Moses system,

• the commercial transfer-based system Lucy,

• their serial combination (”LucyMoses”), and

• an informed selection mechanism (”ranker”).

The components of this hybrid system will be
detailed in the sections below.

1http://qtleap.eu/

Figure 1: Architecture of System Combination.

2 Translation systems

Moses
Our statistical machine translation system was
based on a vanilla phrase-based system built with
Moses (Koehn et al., 2007) trained on the cor-
pora Europarl ver. 7, News Commentary ver. 9
(Bojar et al., 2014), Commoncrawl (Smith et al.,
2013) and MultiUN (Eisele and Chen, 2010). Lan-
guage models of order 5 have been built and inter-
polated with SRILM (Stolcke, 2002) and KenLM
(Heafield, 2011). For German to English, we also
experimented with the method of pre-ordering
the source side based on the target-side grammar
(Popović and Ney, 2006). As a tuning set we used
the news-test 2013.

Lucy
The transfer-based Lucy system (Alonso and
Thurmair, 2003) includes the results of long lin-
guistic efforts over the last decades and that has
been used in previous projects including EURO-
MATRIX, EUROMATRIX+ and QTLAUNCHPAD,
while relevant hybrid systems have been submit-
ted to WMT (Chen et al., 2007; Federmann et
al., 2010; Hunsicker et al., 2012). The transfer-
based approach has shown good results that com-
pete with pure statistical systems, whereas it fo-
cuses on translating according to linguistic struc-
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tures. Its functionality is based on hand-written
linguistic rules and there are no major empirical
components. Translations are processed on three
phases:

• the analysis phase, where the source-
language text is parsed and a tree of the
source language is constructed

• the transfer phase, where the analysis tree is
used for the transfer phase, where canonical
forms and categories of the source are trans-
ferred into similar representations of the tar-
get language

• the generation phase, where the target sen-
tence is formed out of the transfered repre-
sentations by employing inflection and agree-
ment rules.

LucyMoses
As an alternative way of automatic post-editing
of the transfer-based system, a serial trans-
fer+SMT system combination is used, as described
in (Simard et al., 2007). For building it, the first
stage is translation of the source language part of
the training corpus by the transfer-based system.
In the second stage, an SMT system is trained using
the transfer-based translation output as a source
language and the target language part as a target
language. Later, the test set is first translated by
the transfer-based system, and the obtained trans-
lation is translated by the SMT system. In previ-
ous experiments, however, the method on its own
could not outperform Moses trained on a large par-
allel corpus. The example in Figure 1 (taken from
the QTLEAP corpus used in the project) nicely il-
lustrates how the serial coupling operates. While
the SMT output used the right terminology (“Menü
Einfügen” – “insert menu”), the instruction is not
formulated in a very polite manner. In contrast,
the output of the transfer-based system is formu-
lated politely, yet mistranslating the menu type.
The serial system combination produces a perfect
translation. In this particular case, the machine
translation is even better than the human reference
(“Wählen Sie im Einfügen Menü die Tabelle aus.”)
as the latter is introducing a determiner for “table”,
which is not justified by the source.

2.1 Sentence level selection
We present two methods for performing sentence
level selection, one with pairwise classifier and
one based on POS 4-gram IBM1 models.

2.1.1 Empirical machine learning classifier
(primary submission)

The machine learning (ML) selection mecha-
nism is based on encouraging results of previous
projects including EUROMATRIX+ (Federmann
and Hunsicker, 2011), META-NET (Federmann,
2012), QTLAUNCHPAD (Avramidis, 2013; Shah
et al., 2013). It has been extended to include sev-
eral features that can only be generated on a sen-
tence level and would otherwise blatantly increase
the complexity of the transfer or decoding algo-
rithm. In the architecture at hand, automatic syn-
tactic and dependency analysis is employed on a
sentence level, in order to choose the sentence that
fulfills the basic quality aspects of the translation:
(a) assert the fluency of the generated sentence, by
analyzing the quality of its syntax (b) ensure its ad-
equacy, by comparing the structures of the source
with the structures of the generated sentence.

All produced features are used to build
a machine-learned ranking mechanism (ranker)
against training preference labels. Preference la-
bels are part of the training data and rank dif-
ferent system outputs for a given source sentence
based on the translation quality. Preference labels
are generated either by automatic reference-based
metrics, or derived from human preferences. The
ranker was a result of experimenting with various
combinations of feature sets and machine learn-
ing algorithms and choosing the one that performs
best on the development corpus.

The implementation of the selection mechanism
is based on the “Qualitative” toolkit that was pre-
sented at the MT Marathon, as an open-source con-
tribution by QTLEAP (Avramidis et al., 2014).

Feature sets We experimented with feature sets
that performed well in previous experiments. In
particular:

• Basic syntax-based feature set: unknown
words, count of tokens, count of alternative
parse trees, count of verb phrases, PCFG
parse log likelihood. The parsing was per-
formed with the Berkeley Parser (Petrov and
Klein, 2007) and features were extracted
from both source and target. This feature set
has performed well as a metric in WMT-11
metrics task (Avramidis et al., 2011).

• Basic feature set + 17 QuEst baseline fea-
tures: this feature set combines the ba-
sic syntax-based feature set described above
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with the baseline feature set of the QuEst
toolkit (Specia et al., 2013) as per WMT-13
(Bojar et al., 2013). This feature set combina-
tion got the best result in WMT-13 quality es-
timation task (Avramidis and Popović, 2013).
The 17 features set includes shallow features
such as the number of tokens, LM probabili-
ties, number of occurences of the target work
within the target probability, average num-
bers of translations per source word in the
sentence, percentages of unigrams, bigrams
and trigrams in quartiles 1 and 4 of frequency
of source words in a source language corpus
and the count of punctuation marks.

Machine Learning As explained above, the
core of the selection mechanism is a ranker which
reproduces ranking by aggregating pairwise de-
cisions by a binary classifier (Avramidis, 2013).
Such a classifier is trained on binary comparisons
in order to select the best out of two different MT
outputs given one source sentence at a time. As a
training material, we used the evaluation dataset of
the WMT shared tasks (years 2008-2014), where
each source sentence was translated by many sys-
tems and their outputs were consequently ranked
by human annotators. These preference labels pro-
vided the binary pairwise comparisons for training
the classifiers. Additionally to the human labels,
we also experimented on training the classifiers
against automatically generated preference labels,
after ranking the outputs with METEOR (Banerjee
and Lavie, 2005). In each translation direction, we
chose the label type (human vs. METEOR) which
maximizes if possible all automatic scores on our
development set, including document-level BLEU.

We exhaustively tested all suggested feature sets
with many machine learning methods, including
Support Vector Machines (with both RBF and lin-
ear kernel), Logistic Regression, Extra/Decision
Trees, k-neighbors, Gaussian Naive Bayes, Lin-
ear and Quadratic Discriminant Analysis, Ran-
dom Forest and Adaboost ensemble over Deci-
sion Trees. The binary classifiers were wrapped
into rankers using the soft pairwise recomposi-
tion (Avramidis, 2013) to avoid ties between the
systems. When ties occurred, the system se-
lected based on a predefined system priority (Lucy,
Moses, LucyMoses). The predefined priority was
defined manually based on preliminary observa-
tions in order to prioritize the transfer-based sys-
tem, due to its tension to achieve better grammat-

icality. Further analysis on this aspect may be re-
quired.

Best combination The optimal systems are us-
ing:

1. the Basic feature set + 17 QuEst baseline fea-
tures for GermanrightarrowEnglish, trained
with Suppor Vector Machines (Basak et al.,
2007) against human ranking labels.

2. the basic syntax-based feature set for
English→German, trained with Support Vec-
tor Machines against METEOR scores. ME-
TEOR was chosen since for this language pair,
the empirical mechanism trained on human
judgments had very low performance in term
of correlation with humans.

2.1.2 POS 4-gram IBM1 models (contrastive
submission)

Using the IBM1 scores (Brown et al., 1993) for
automatic evaluation of MT outputs without ref-
erence translations has been proposed in Popović
et al. (2011), and the best variant in terms of cor-
relation with human ranking was the target-from-
source direction based on POS 4-grams. There-
fore, we investigated this variant for our sentence
selection, and we submitted the obtained transla-
tion outputs as contrastive.

The IBM1 scores are defined in the following
way:

IBM1 =
1

(S + 1)H

H∏
i=1

S∑
j=0

p(hi|sj) (1)

where sj are the POS 4-grams of the source lan-
guage sentence, S is the POS 4-gram length of this
sentence, hi are the POS 4-grams of the target lan-
guage translation output (hypothesis), and H is the
POS 4-gram length of this hypothesis.

A parallel bilingual corpus for the desired lan-
guage pair and a tool for training the IBM1 model
are required in order to obtain IBM1 probabilities
p(hi|sj). For the POS n-gram scores, appropriate
POS taggers for each of the languages are neces-
sary. The POS tags cannot be only basic but must
have all details (e.g. verb tenses, cases, number,
gender, etc.).

The bilingual IBM1 probabilities used in our
experiments are learnt from the German-English
part of the WMT 2010 News Commentary bilin-
gual corpora. Both German and English POS tags
were produced using TreeTagger (Schmid, 1994).
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3 Experimental results

Table 1 presents BLEU scores (Papineni et al.,
2002), word F-scores and POS F-scores (Popović,
2011) for all individual systems and system com-
binations for both translation directions. The fol-
lowing interesting tendencies can be observed:

• German→English:

– Moses and LucyMoses are comparable
on the word level (BLEU and WORDF)

– LucyMoses is best on the syntactic
(POS) level

– LucyMoses achieves better scores than
both its components

– using all three systems with a selection
mechanism is the best option

• English→German:

– Lucy is comparable with Moses on the
word level and better on syntactic level

– LucyMoses improves all scores
– LucyMoses+Moses (LM+M) is the best

combination for word level scores
– Lucy+LucyMoses (L+LM) is compara-

ble with the combination of all three sys-
tems (L+LM+M) for the syntactic ori-
ented POSF score

We submitted the combination of all three sys-
tems for both selection mechanisms and for both
translation directions. It should be noted that the
ML classifier is used for the project’s first official
prototype, whereas the IBM1 classifier has been
investigated only recently in the framework of the
project – therefore the primary submission for the
shared task is the ML classifier although it yielded
lower automatic scores than the IBM1 classifier.

In order to estimate the limits of the classi-
fiers for the given three MT systems, upper bound
scores are presented in the last two rows, when se-
lecting criteria were the WORDF and POSF scores
themselves. It can be seen that there is a room for
improvement for both selection methods. Further
investigation, tuning and extension of the selec-
tion mechanisms will provide more insights and
has potential for future improvements of the selec-
tion itself as well as of the MT systems.

Preliminary results concerning analysis of dif-
ferences between the systems and behaviour of
classifiers are shown in the following section.

3.1 Analysis of the results

First step towards better understanding of the se-
lection mechanisms is to investigate the contribu-
tion of each of the individual systems in the final
translation output. The results are presented in Ta-
ble 2 in the form of percentage of sentences se-
lected from each system. It is notable that:

• the ML classifier mostly favors the transfer-
based output;

• for the English→German translation, the
same holds for the IBM1 classifier; for the
other translation direction, Lucy is selected
very rarely – for less than 2% sentences;

• upper bound selection yields a more or less
uniform distribution, however WORDF is
clearly biased towards LucyMoses and POSF
towards Lucy.

First indication is that the deep features of the
ML classifier are active and therefore this classi-
fier has a bias towards the transfer-based output.
Furthermore, system contributions of upper bound
selection methods indicate that the transfer-based
outputs are more grammatical and thus favored
by the syntax-oriented POSF score, whereas the
LucyMoses system, which can be seen as a lexi-
cal reparation of a grammatical output, is favored
by the lexical WORDF score. Nevertheless, these
first hypotheses need to be confirmed by further
studies that are planned.

Table 3 shows examples of differences between
the selection methods as well as between the three
individual MT systems. The sentences are taken
from the WMT-15 test set. First column denotes
the selection method which choose the particular
translation output. Sentence 1 illustrates the differ-
ences between two classifiers as well as between
two F-scores; POSF score and ML classifier opt
for the transfer-based translation, whereas IBM1
choses Moses and WORDF score prefers Lucy-
Moses. Sentences 2-4 show the discrepance be-
tween the ML classifier and the automatic scores;
the IBM1 score selection differs from the upper
bound selections only for the sentence 4. Such
sentences are the most probable reason for lower
overall MLC performance in terms of automatic
scores. The last sentence shows an example where
both classifiers agree, but they disagree with both
F-scores.
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(a) De→En
German→English BLEU WORDF POSF
individual Lucy (L) 20.8 25.9 42.6
systems Moses (M) 23.2 28.2 42.7

LucyMoses (LM) 23.2 27.9 44.2
selection ML classifier L+LM+M 22.6 27.4 43.6
mechanism POS 4-gram IBM1 L+M 23.2 28.2 42.8

L+LM 23.2 27.9 44.2
LM+M 23.7 28.6 44.5
L+LM+M 23.7 28.6 44.5

upper max(WORDF) L+LM+M 26.9 30.8 46.8
bounds max(POSF) L+LM+M 25.6 30.7 48.6

(b) En→De
English→German BLEU WORDF POSF
individual Lucy (L) 17.3 22.9 44.5
systems Moses (M) 17.1 23.1 41.9

LucyMoses (LM) 18.9 24.4 45.3
selection ML classifier L+LM+M 18.1 23.7 44.4
mechanism POS 4-gram IBM1 L+M 18.2 23.6 44.7

L+LM 18.6 24.0 45.7
LM+M 19.1 24.4 45.1
L+LM+M 18.9 24.1 45.4

upper max(WORDF) L+LM+M 22.4 26.6 47.1
bounds max(POSF) L+LM+M 21.0 26.1 49.4

Table 1: Translation results [%] for the German-English language pair.

(a) De→En
German→English Lucy Moses LucyMoses
ML classifier 42.1 36.6 21.3
POS 4-gram IBM1 L+M 2.8 97.2 /

L+LM 2.5 / 97.5
LM+M / 42.4 57.6
L+LM+M 1.7 56.0 42.3

WORDF L+LM+M 29.3 31.8 38.9
POSF L+LM+M 34.5 33.7 31.8

(b) En→De
English→German Lucy Moses LucyMoses
ML classifier 44.0 8.0 48.0
POS 4-gram IBM1 L+M 56.5 43.5 /

L+LM 63.3 / 36.7
LM+M / 45.5 54.5
L+LM+M 41.5 22.1 36.3

WORDF L+LM+M 34.2 29.4 36.3
POSF L+LM+M 42.3 27.1 30.5

Table 2: Percentage of selected sentences from each individual system.
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The table also illustrates advantages of the se-
rial LucyMoses system – this system produces the
best translation output for all presented sentences
except for sentence 3.

4 Summary and outlook

We described a hybrid MT system based on three
different individual systems where the final trans-
lation output is produced by a sentence level se-
lection mechanism, with the possibility to include
deep linguistic and grammatical features. Prelim-
inary analysis suggests that various improvements
are possible, starting from improvements on the
transfer-based system (handling of lexical items
such as terminology, MWEs, OOVs and robust-
ness of parsing), the serial combination (e.g., im-
proved disambiguation), up to more detailed anal-
ysis and testing and improvement of the selection
mechanism (e.g., integrating more ”deep” infor-
mation from external parsing).
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