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Abstract
This article describes the Aalto Uni-
versity entry to the English-to-Finnish
shared translation task in WMT 2015.
The system participates in the con-
strained condition, but in addition we
impose some further constraints, using
no language-specific resources beyond
those provided in the task. We use
a morphological segmenter, Morfessor
FlatCat, but train and tune it in an un-
supervised manner. The system could
thus be used for another language pair
with a morphologically complex tar-
get language, without needing modifi-
cation or additional resources.

1 Introduction
In isolating languages, such as English, suit-
able smallest units of translation are easy to
find using whitespace and punctuation char-
acters as delimiters. This approach of us-
ing words as the smallest unit of transla-
tion is problematic for synthetic languages
with rich inflection, derivation or compound-
ing. Such languages have very large vocabu-
laries, leading to sparse statistics and many
out-of-vocabulary words.

A synthetic language uses fewer words than
an isolating language to express the same
sentence, by combining several grammatical
markers into each word and using compound
words. This difference in granularity is prob-
lematic in alignment, when a word in the iso-
lating language properly aligns with only a
part of a word in the synthetic language.

In order to balance the number of tokens
between target and source, it is often possi-

ble to segment the morphologically richer side.
Oversegmentation is detrimental, however, as
longer windows of history need to be used,
and useful phrases become more difficult to
extract. It is therefore important to find a
balance in the amount of segmentation. A
linguistically accurate segmentation may be
oversegmented for the task of translation, if
some of the distinctions are either unmarked
or marked in a similar way in the other lan-
guage.

An increase in the number of tokens means
that the distance spanned by dependencies
becomes longer. Recurrent Neural Network
(RNN) based language models have been
shown to perform well for English (Mikolov
et al., 2011). Their strength lies in being the-
oretically capable of modeling arbitrarily long
dependencies.

Moreover, a huge vocabulary is particularly
detrimental for neural language models due to
their computationally heavy training and need
to marginalize over the whole vocabulary dur-
ing prediction. As morphological segmenta-
tion can reduce the vocabulary size consider-
ably, using RNN language models seems even
more suitable for this approach.

Our system is designed for translation in the
direction from a morphologically less complex
to a more complex language. The opposite
direction – simplifying morphology – has re-
ceived more attention, especially with English
as the target language.

Of the target languages in this year’s task,
Finnish is the most difficult to translate into,
shown by Koehn (2005) and reconfirmed by
the evaluations of this shared task. Even
though the use of supervised linguistic tools
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(such as taggers, parsers, or morphological an-
alyzers) was allowed in the constrained con-
dition, our method does not use them. It is
therefore applicable to other morphologically
complex target languages.

1.1 Related work
The idea of transforming morphology to im-
prove statistical machine translation (SMT) is
well established in the literature. An early ex-
ample is Nießen and Ney (2004), who apply
rule-based morphological analysis to enhance
German→English translation.

In particular, many efforts have focused on
increasing the symmetry between languages
in order to improve alignment. Lee (2004)
uses this idea for Arabic→English translation.
In this translation direction, symmetry is in-
creased through morphological simplification.

It has been shown that a linguistically cor-
rect segmentation does not coincide with the
optimal segmentation for purposes of align-
ment, both using rule-based simplification of
linguistic analysis (Habash and Sadat, 2006),
and through the use of statistical methods
(Chung and Gildea, 2009).

Using segmented translation with unsuper-
vised statistical segmentation methods has
yielded mixed results. Virpioja et al. (2007)
used Morfessor Categories-MAP in transla-
tion between three Nordic languages, in-
cluding Finnish, while Fishel and Kirik
(2010) used Morfessor Categories-MAP in
English↔Estonian translation. In these stud-
ies, segmentation has in many cases worsened
BLEU compared to word-based translation.
The main benefit of segmentation has been a
decrease in the ratio of untranslated words.

Salameh et al. (2015) translate
English→Arabic, and find that segmen-
tation is most useful when the extracted
phrases are morphologically productive, and
that using a word-level language model
reduces this productivity (albeit increasing
the BLEU score).

The desegmentation process, and the ef-
fect of different strategies for marking the
word-internal token boundaries, have mostly
been examined in recombining split compound
words. Stymne and Cancedda (2011) explore
different marking strategies, including use of
part-of-speech tags, in order to allow the trans-

lation system to produce compounds unseen in
the training data.

2 System overview
An overview of the system is shown in Fig-
ure 1. The four main contributions of this
work are indicated by numbered circles:

1. Use of unsupervised Morfessor FlatCat
(Grönroos et al., 2014) for morphological
segmentation,

2. Tuning the morphological segmentation
directly to balance the number of trans-
lation tokens between source and target,

3. A new marking strategy for morph
boundaries,

4. Rescoring n-best lists with RNNLM
(Mikolov et al., 2010).

Our system extends an existing phrase-
based SMT system to perform segmented
translation, by adding pre-processing and
post-processing steps, with no changes to the
decoder. As translation system to be ex-
tended, we used the Moses release 3.0 (Koehn
et al., 2007). We used GIZA++ alignment,
and a 5-gram LM with modified-KN smooth-
ing. Many Moses settings were left at their
default values: phrase length 10, grow-diag-
final-and alignment symmetrization, msd-
bidirectional-fe reordering, and distortion
limit 6.

The standard pre-processing steps not spec-
ified in Figure 1 consist of normalization
of punctuation, tokenization, and statistical
truecasing. All three of these were performed
with the tools included in Moses.

In addition, the parallel data was cleaned
and duplicate sentences were removed. Clean-
ing was performed after morphological seg-
mentation, as the segmentation can increase
the length in tokens of a sentence.

The post-processing steps are the reverse
of the pre-processing steps: desegmentation,
detruecasing, and detokenization. Rescor-
ing of the n-best list was done before post-
processing.

The feature weights were tuned using
MERT (Och, 2003), with BLEU (Papineni
et al., 2002) of the post-processed hypothesis
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Figure 1: A pipeline overview of training and testing of the system. Main contributions are
hilighted with numbers 1-4.

against a tuning set as the metric. 20 random
restarts per MERT iteration were used, with
iterations repeated until convergence.

A similar MERT procedure was also used for
choosing the interpolation weights for rescor-
ing, with 100 random restarts in a single iter-
ation. A single-iteration approach was chosen,
as there was no need to translate a new n-best
list during the MERT for rescoring.

2.1 Morphological segmentation

For morphological segmentation, we use the
latest Morfessor variant, FlatCat (Grönroos
et al., 2014). Morfessor FlatCat is a proba-
bilistic method for learning morphological seg-
mentations, using a prior over morph lexicons
inspired by the Minimum Description Length
principle (Rissanen, 1989).

Morfessor FlatCat applies a Hidden Markov
model for morphotactics. Compared to
Morfessor Baseline, it provides morph cat-
egory tags (stem, prefix, suffix) and has
superior consistency especially in compound
word splitting. In contrast to Categories-
MAP (Creutz and Lagus, 2005), used for sta-
tistical machine translation e.g. by Clifton
and Sarkar (2011), it supports semi-supervised

learning and hyper-parameter tuning.
No annotated data was used in the training

of Morfessor FlatCat, neither in training nor
parameter tuning. Instead of aiming for a lin-
guistic morphological segmentation, our goal
was to balance the number of translation to-
kens between source and target languages.

In order to bring the number of tokens
on the Finnish target side closer to the En-
glish source side, we segmented the Finnish
text with an unsupervised Morfessor FlatCat
model, tuned specifically to achieve this bal-
ance. The corpus weight hyper-parameter α
was chosen by minimizing the sentence-level
difference in token counts between the English
and the segmented Finnish sides of the parallel
corpus

α = arg min
α

∑
(e,f)∈(E,F )

∣∣∣#(e)−#
(
M(f ; α)

)∣∣∣,
(1)

where # gives the number of tokens in the sen-
tence, and M(f ; α) is the segmentation with a
particular α.

Numbers and URLs occurring in the parallel
corpus were passed through Morfessor unseg-
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mented, but translated by Moses without any
special handling.

2.2 Morph boundary marking strategy
In the desegmentation step, consecutive to-
kens are concatenated either with or with-
out an intermediary space. Morph boundaries
must be distinguished from word boundaries,
so that the desegmentation step can recon-
struct the words correctly. There are various
ways to mark the boundaries, some of them
shown in Table 1.

A common way is to attach a symbol to all
morphs on the right (or left) side of the morph
boundary. We call this strategy right-only.

Alternatively both-sides of the boundary can
be marked. In this strategy, a decision must
be made whether to be aggressive or conserva-
tive in joining morphs, if the translation sys-
tem outputs an incorrect sequence where the
markers do not match up on both sides. For
these experiments we chose the conservative
approach, removing the unmatched marker
from a half-marked boundary, and treating it
as a word boundary.

A downside of the right-only and both-sides
strategies is that a stem is marked differently
depending on whether it has a prefix attached
or not, even if the surface form of the stem
does not change.

The morph categories produced by FlatCat
can be used for marking boundaries according
to the structure of the word. We can mark
affixes from the side that points towards the
stem, leaving stems unmarked regardless of
the presence of affixes. However, this would
leave the boundaries between compound parts
indistinguishable from word boundaries, mak-
ing some additional marking necessary.

Marking affixes by category and compound
boundaries with a special linking token is
called the compound-symbol strategy. Instead
marking the last morpheme in the compound
modifiers (non-final compound parts), results
in the compound-left strategy.

After initial unimpressive results with the
compound marking strategies, we concluded
that segmenting the compound modifiers does
not lead to productive translation phrases,
in contrast to boundaries between compound
parts and boundaries separating inflective af-
fixes. In response, we formulated the advanced

Strategy Example
Surface form supistamistavoitteistaan
Segmentation supistaSTMmisSUFtavoitteistaSTManSUF
Translation of their reduction targets
right-only supista +mis +tavoitteista +an
both-sides supista+ +mis+ +tavoitteista+ +an
compound-sym supista +mis +@+ tavoitteista +an
compound-left supista +mis@ tavoitteista +an
advanced supistamis+ tavoitteista +an

Table 1: Morph boundary marking strategies.

marking strategy, which goes beyond bound-
ary marking to modify the segmentation, by
rejoining the morphs in the modifier parts of
compounds.

The sequence of morph categories is used for
grouping the morphs into compound parts. A
word consists of one or more compound parts.
Each compound part consists of exactly one
stem, and any number of preceding prefixes
and following suffixes.

CompoundPart = Pre∗ Stm Suf∗

Word = CompoundPart+ (2)

For all compound parts except the last one,
the affixes are rejoined to their stem. Morphs
of length 5 or above were treated as stems,
regardless of the category assigned to them by
FlatCat.

Prefixes and compound modifiers are
marked with a trailing ’+’, suffixes are marked
with a leading ’+’, and the stems of the word-
final compound parts are left unmarked.

2.3 Rescoring n-best lists
Segmentation of the word forms increases
the distances spanned by dependencies that
should be modeled by the language model. To
compensate this, we apply a strong recurrent
neural network language model (RNNLM)
(Mikolov et al., 2010). The additional lan-
guage model is used in a separate rescoring
step, to speed up translation, and for ease of
implementation.

The RNNLM model was trained on morpho-
logically segmented data. Morphs occurring
only once were removed from the vocabulary,
and replaced with <UNK>. The parameters
were set to 300 nodes in the hidden layer, 500
vocabulary classes, 2M direct connections of
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Monolingual data Parallel data
Purpose news2014 v2 europarl v8 wikititles newsdev2015 test2006
Training Morfessor fi fi fi
Training LMs fi fi fi
Training Moses en – fi en – fi
Tuning Morfessor en – fi
Tuning RNNLM fi
Tuning Moses en – fi
Development testing en – fi

Sentences 1378582 1926114 153728 1500 2000

Table 2: The data sets used for different purposes. “en–fi” signifies that parallel data was used,
“fi” signifies monolingual data, or using only the Finnish side of parallel data.

order 4, backpropagation through 5 time steps,
with blocksize 25.

At translation time, 1000-best lists of morph
segmented hypotheses produced by Moses
were scored using the RNNLM.

The Moses features were extended by in-
cluding the RNNLM score as an additional fea-
ture. A new linear combination of the features
was optimized with MERT, and used for the
final hypothesis ranking. For the BLEU mea-
surement in MERT the segmented hypothe-
sis was post-processed (including desegmenta-
tion) and compared to an un-preprocessed ref-
erence.

3 Data

The data sets used in training and tuning are
shown in Table 2. Both europarl v8 and wik-
ititles were used as parallel training data, but
only europarl was used for tuning the hyper-
parameter α, as the titles do not follow a typ-
ical sentence structure.

The Finnish side of the parallel sets was
used to extend the monolingual training data.
The monolingual data were concatenated for
LM training, instead of interpolating different
n-gram models.

After cleaning, the combined parallel train-
ing data contained 2,004,450 sentences. The
parallel set used for testing during develop-
ment is test2006, a europarl subset of 2000
sentences sampled from three last months of
2000.1

1http://matrix.statmt.org/test_sets/list

dev-test test
test2006 newstest2015

Configuration BLEU BLEU
advanced, α = 0.7 .147 .112

+rescoring .147 .116
advanced, α = 0.4 .145 .112
both-sides .141 .114
compound-left .140 .113
compound-sym .139 .111
right-only .139 .111
(word) .146 .100

Table 3: Results of evaluation.

4 Results

Table 3 shows cased BLEU scores on the in-
domain development set and out-of-domain
test set, for various configurations. The en-
try marked word is a baseline system without
segmentation.

When evaluating on the in-domain develop-
ment set, most configurations that use seg-
mentation achieve worse BLEU compared to
the word baseline. Only the best configura-
tions, using the advanced strategy, are able to
achieve slightly higher BLEU.

Switching domains to the test corpus leads
to a larger difference, in favor of the segment-
ing methods. The choice of morph boundary
marking strategy and the sentence-based tun-
ing of the segmentation had a moderate effect
on BLEU. The addition of rescoring did not
improve BLEU on the in-domain dev-test cor-
pus, but resulted in a slight improvement on
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the out-of-domain test corpus.
The proportion of word tokens that were

segmented into at least two parts was 19.8%.
The joining of compound modifiers did not
have a large effect on the total number of to-
kens, causing a reduction from 49,524,520 to
49,475,291 (0.1%).

Using the sentence-level balancing, the op-
timal value for the corpus weight hyper-
parameter α was 0.7. The change in the num-
ber of tokens caused by the joining of com-
pound modifiers did not affect the optimum.
Balancing the token count of the whole cor-
pus yielded a much lower α of 0.4, leading to
oversegmentation and lower BLEU.

The weight of the RNNLM in the final linear
combination was 0.092, compared to 0.119 of
the n-gram LM. This indicates that it is able
to complement the n-gram model, but does
not dominate it.

In the human evaluation of WMT15, the
system with advanced morph boundary mark-
ing strategy and RNNLM rescoring was
ranked in tied second place of five methods
participating in the constrained condition.

5 Conclusions

To improve English-to-Finnish translation in a
phrase-based machine translation system, we
tuned an unsupervised morphological segmen-
tation preprocessor to balance the token count
between source and target languages. Ap-
propriate choice of morph boundary marking
strategy and amount of segmentation brought
the BLEU score slightly above a word-based
baseline, in contrast to some previous work
with unsupervised segmentation (Virpioja et
al., 2007; Fishel and Kirik, 2010).

To compensate for the need of longer con-
texts, we added a recurrent neural network
language model as a rescoring step. It did not
help for the in-domain development corpus,
but improved results on the out-of-domain test
corpus.

Possible directions for future work include
Minimum Bayes Risk combination of trans-
lation hypotheses from systems trained with
different segmentations and marking strate-
gies (De Gispert et al., 2009), using morphol-
ogy generation instead of segmented transla-
tion (Clifton and Sarkar, 2011), and improving

the alignment directly in addition to balancing
of token counts (Snyder and Barzilay, 2008).
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