
Proceedings of the Tenth Workshop on Statistical Machine Translation, pages 330–335,
Lisboa, Portugal, 17-18 September 2015. c©2015 Association for Computational Linguistics.

Data Enhancement and Selection Strategies for the Word-level Quality
Estimation

Varvara Logacheva§, Chris Hokamp†, Lucia Specia§
§Department of Computer Science, University of Sheffield, UK
{v.logacheva,l.specia}@sheffield.ac.uk

†CNGL Centre for Global Intelligent Content
Dublin City University, Ireland

chokamp@computing.dcu.ie

Abstract

This paper describes the DCU-SHEFF
word-level Quality Estimation (QE) sys-
tem submitted to the QE shared task at
WMT15. Starting from a baseline set of
features and a CRF algorithm to learn a
sequence tagging model, we propose im-
provements in two ways: (i) by filtering
out the training sentences containing too
few errors, and (ii) by adding incomplete
sequences to the training data to enrich the
model with new information. We also ex-
periment with considering the task as a
classification problem, and report results
using a subset of the features with Random
Forest classifiers.

1 Introduction

The WMT shared task on Quality estimation (QE)
for Machine Translation (MT) has included the
sub-task on the QE at the word level since the year
2013. The goal of this task is to assign a quality
label to each word of an automatically translated
sentence without using its reference translations.
The set of possible output labels can vary. Labels
can specify the edit action which should be per-
formed on the word in order to improve the sen-
tence (substitution, deletion, insertion) — these la-
bels were used in the WMT13 QE task (Bojar et
al., 2013). Labels can be further refined to spec-
ify the type of error: grammar error, wrong termi-
nology, untranslated word, etc., motivated by the
MQM error typology 1 — this tagging was used in
last year’s task (Bojar et al., 2014). In both cases,
tags can be generalised to a binary label, “GOOD”
or “BAD”, indicating whether or not the word is
correct.

1http://www.qt21.eu/launchpad/content/
multidimensional-quality-metrics

This year, the word-level QE task (Task 2 in
WMT15 QE shared task2) consists in assigning
only a binary label (“GOOD” or “BAD”) to every
word in automatically translated sentences — that
is, to identify if a word is suitable for this sentence
or should be modified. The possible errors are sub-
stitution (word replacement) or insertion. This for-
mulation of the task cannot detect deletions in the
MT hypothesis, because there is a one-to-one cor-
respondence between tokens in the hypothesis and
output tags.

The data for the word-level QE task was pro-
duced for one translation direction, namely from
English into Spanish. The training, development
and test datasets have been translated automati-
cally with an online statistical MT system, and
then post-edited by human translators. Besides
the datasets themselves, baseline feature sets were
provided. The suggested baseline training model
is conditional random fields (CRF) (Lafferty et
al., 2001), which is one of the most widely used
techniques for sequence labelling. The baseline
tagging for this task was done with CRF model
trained using CRF++ tool3.

Our system uses the baseline features released
for the task and the same tool which was used
for baseline model generation. However, we
performed data selection and bootstrapping tech-
niques that led to significant improvement over the
baseline.

2 Baseline setting

The goal of the system was to estimate the qual-
ity of machine-translated sentences at the word-
level, i.e. to assign every word a label “GOOD” or
“BAD” depending on its quality. Therefore, the
training and test data contains the following in-
formation: the source sentences, their automatic

2http://www.statmt.org/wmt15/
quality-estimation-task.html

3https://code.google.com/p/crfpp/

330

translations into the target language, the manual
post-editions (corrections) of the automatic trans-
lations, and the word-level tags for the automatic
translations.

The tags were acquired by aligning the machine
translations with their post-editions using the TER
tool (Snover et al., 2006). Unchanged words were
assigned the label “GOOD”, words which were
substituted with another word or deleted by a post-
editor were assigned the label “BAD”. The “BAD”
labels thus correspond to the “addition” and “sub-
stitution” edit operations in the word-level string
alignment between the MT hypothesis and the
post-edited segment.

The dataset contains automatic translations
from English into Spanish. The training data con-
sists of 11,271 sentences, the development and test
sets have 1,000 and 1,817 sentences, respectively.
The post-editions and tags for the test data were
not made available until after the end of the evalu-
ation period.

2.1 Features

We used a subset of features described by Luong
et al. (2014), mainly the features that were listed
as the most informative. This corresponds to the
baseline feature set released for the shared task.
The full list of features is the following:

• Word count features:

– source and target token counts
– source and target token count ratio

• Lexical features:

– target token
– target token’s left and right contexts of 1

word

• Alignment features:

– source word aligned to the target token
– source word’s left and right contexts of

1 word

• Boolean dictionary features:

– target token is a stopword
– target token is a punctuation mark
– target token is a proper noun
– target token is a number

• Target language model features:

– order of the highest order ngram which
ends with the target token

– order of the highest order ngram which
starts with the target token

– backoff behaviour of the ngram
(ti−2, ti−1, ti), where ti is the target
token (backoff behaviour is computed
as described in Raybaud et al. (2011))

– backoff behavior of the ngram
(ti−1, ti, ti+1)

– backoff behavior of the ngram
(ti, ti+1, ti+2)

• Source language model features:

– order of the highest order ngram which
ends with the source token

– order of the highest order ngram which
starts with the source token

• Boolean pseudo-reference feature: 1 if the to-
ken is contained in the pseudo-reference, 0
otherwise4

• Part-of-speech features5:

– POS of the target token
– POS of the source token

• WordNet features:

– Number of senses for the target token
– Number of senses for the source token

2.2 Alternative system
We performed additional experiments with a re-
duced feature set which does not contain lexical
and alignment features. These features were ex-
cluded in order to enable the use of classifiers im-
plemented in the scikit-learn6 toolkit. The
implementations in this toolkit can only deal with
scalar features directly. Therefore, in order to use
categorical features (e.g. strings), these need to be
converted into one-hot vector representation.

The one-hot representation of a categorical fea-
ture is the representation of every possible feature

4The pseudo-reference used for this feature extraction is
the automatic translation generated by an English-Spanish
phrase-based statistical MT system trained on the Eu-
roparl corpus (Koehn, 2005) using Moses system with stan-
dard settings (http://www.statmt.org/moses/?n=
Moses.Baseline).

5POS tagging was performed with TreeTagger tool
http://www.cis.uni-muenchen.de/˜schmid/
tools/TreeTagger/

6http://scikit-learn.org/

331

value from a domain D as a vector of 0s and a
single 1. The length of such vector is |D| (length
of the set of possible values of the feature), every
position in the vector corresponds to a value from
D. Each instance of this feature should correspond
to a vector which has only one element with value
1 at the position of the categorical value taken by
this instance of the feature. Since the categorical
features used rely on a very large vocabulary, con-
verting them into one-hot vectors would have in-
creased the feature space significantly, resulting in
very sparse feature vectors.

Systems using shorter feature sets (i.e. without
lexical and alignment features) were trained with
the Random Forest classifier in scikit-learn
with default settings. This scenario considers each
(feature vector, token, tag) tuple as a separate in-
stance, so that we no longer explicitly model the
dependencies in the sequence. However, contex-
tual information about the token is still included
in the feature set via several other features (see
Section 2.1), so sequence information is not com-
pletely disregarded in this scenario.

2.3 Baseline results

The baseline results for our systems on the de-
velopment set are outlined in Table 1. Since in-
stances of the “GOOD” class are much more nu-
merous than instances tagged as “BAD”, the av-
erage F1-score is dominated by the F1-GOOD.
However, the F1-GOOD is high for any system, as
even a naive system tagging all words as “GOOD”
would score high. This metric is thus uninforma-
tive. Therefore, the primary quality metric for this
task is F1-BAD. The performance of the Random
Forest classifier is significantly higher than that of
CRF model, although it uses a smaller feature set
and does not take the labelling context into ac-
count.

F1-BAD F1-GOOD Weighted F1
Baseline
(CRF) 0.18 0.88 0.75

Reduced
(Random
Forest)

0.24 0.86 0.78

Table 1: Baseline results.

The scores given here and further in the paper
are for the development set, as this dataset was
used for tuning the systems and choosing the set-
tings to be submitted for the task. The scores for
the test set on the official submissions are given in

Section 5. These are a bit lower, but they main-
tain the relative trend (i.e. the systems that per-
form better on the development set perform better
on the test set as well).

3 Generating Data by Bootstrapping
New Examples

Although the size of training data is considerably
larger than the size of datasets that have been
used before, it may still be too sparse to perform
QE at the word level. This is because not all
tokens are shared between the training and test
datasets. Instead of using a data selection method
to choose training examples which correspond to
the dev/test sets, we decided to enhance the train-
ing data with additional samples generated from
the initial dataset. This corresponds more closely
with a realistic deployment scenario for a word-
level QE system, where the test set is unknown.

We tested two methods of additional data gen-
eration:

• In addition to every complete sentence from
the training data we used sequences that con-
sist of the first n words of this sentence,
where n ∈ [1, N] (N = number of words in
the sentence). For example, for each sentence
of 10 words we added nine new training ex-
amples: a sequence that consists of the first
word only, a sequence that consists of the first
two words, the first three words, etc. This
strategy is further referred to as 1-to-N.

• For every sentence from the training data we
used all trigrams of this sentence as training
examples. This strategy will be denoted as
ngram.

Another idea is to perform bootstrapping not
only to expand the training data, but also to break
the test set into smaller chunks for tagging.

Bootstrapping for the test set is produced as fol-
lows. In order to tag a sequence s = s1s2 ... sn

we convert it into a list of n sub-sequences
Ls = [s1; s1s2; s1s2s3; ... ; s1s2...sn]. Each
sub-sequence from Ls is tagged by the system.
The final tagging for every word si ∈ s is taken
from a sub-sequence where si is the last symbol,
so that we compose the final tagging for the se-
quence s from the tags for words si listed in bold:
[s1; s1s2; s1s2s3; ... ; s1s2...sn].

The described scenario refers to the 1-to-N
bootstrapping method for the test set. The ngram

332

bootstrapping method for the test set can be used
analogously.

The intuition behind this approach is the follow-
ing. If we train a system on a set of incomplete
sequences (1-to-N or ngrams), it might capture lo-
cal dependencies which do not hold for complete
sentences. Therefore, in order to improve the pre-
diction accuracy we should test the system on in-
complete sequences as well. There are many pos-
sibilities for combining the partial sequence pre-
dictions (e.g. averaging the scores of one word in
different incomplete sequences or training a linear
regression model to find a weight for every pre-
diction), but in this experiment we tested only one
strategy: taking the score of the i-th word from the
i-th sequence.

Training plain 1-to-N ngram
Test ↓
plain 0.170 0.238 0.213
1-to-N 0.221 0.251 0.212CRF
ngram 0.170 0.238 0.226
plain 0.236 0.239
1-to-N 0.255 0.237Random

Forest ngram 0.234 0.255

Table 2: Experiments with bootstrapped data (F1-
score for “BAD” class). ‘plain’ setting means no
bootstrapping (original data).

We tested all the training and test data boot-
strapping techniques. The results are outlined in
Table 2. We used three different training sets: the
original dataset with no bootstrapping (denoted as
‘plain’ in the table), a dataset bootstrapped with
the 1-to-N strategy, and one bootstrapped with the
ngram strategy, and three different test sets (anal-
ogously, plain, 1-to-N, and ngram). We trained
two systems for every combination of datasets:
one system performs sequence labelling with CRF,
the other classifies words with a Random Forest
classifier. That would give us 3× 3× 2 = 18 sys-
tems. However, the experiments with training data
enhanced with 1-to-N strategy could not be per-
formed for Random Forest classifier due to com-
putational complexity, so we are effectively com-
paring 15 combinations of labelling strategies and
bootstrapping techniques.

The CRF model benefits from both strategies:
when bootstrapping only training data the F1-
score increases from 0.17 to 0.21 (ngram) and
0.23 (1-to-N). Bootstrapping of test data brings an
additional improvement: even when the training
set is not changed, applying 1-to-N strategy to the

test increases the score from 0.17 to 0.22. How-
ever, ngram bootstrapping of the test proved inef-
fective unless it was applied to the training data as
well.

We assume that bootstrapping the training data
helps due to the fact that in the CRF model all in-
stances within a sequence are influenced by each
other: the choice of tag for a word is dependent
on all other words, and not only the neighbours of
the current word. Therefore, incomplete sentences
create new dependencies that improve overall pre-
diction accuracy.

As shown also in Table 2, we performed the
same experiment with the Random Forest classi-
fier in order to check if the incomplete data in-
stances have a positive effect in the CRF model be-
cause of the properties of the algorithm or simply
because of the increased dataset size. Our assump-
tion was that since the Random Forest classifier
output depends only on local context of a tagged
word, it should not be influenced by the new train-
ing sequences. This hypothesis was corroborated
by our experiment: the classifier trained on the ex-
tended dataset performed slightly better, but this
difference is much smaller than the one observed
for the CRF model with the additional data.

In order to check that the improvements are
not only due to the increased dataset size, we
performed the same experiments with duplicated
training sentences. The output of this duplicated
system is identical to the baseline system, show-
ing the key component of the improvement are in-
deed the incomplete sentences. Our intuition is
that since the new training sentences differ from
the original ones, they provide new information to
the sequence labelling model.

4 Data selection

An inspection of the training and development
data showed that 15% of the sentences contain no
errors and are thus less useful for model learning.
In addition, the majority of the sentences have low
edit distance (HTER) score, i.e. contain very few
edits/errors. Figure 1 shows the HTER scores dis-
tribution for the training dataset: 50% of the sen-
tences have HTER of 0.15 or lower (points below
the bottom orange line in the figure), 75% of the
sentences have HTER of 0.28 or lower (points be-
low the middle green line). The distributions for
the development and test sets are similar.

A large number of sentences with few or no ed-

333

Figure 1: Distribution of HTER scores for the
training data: each blue dot represents a training
sentence. Dots below the orange line make 50%
of the data, dots below the green line, 75% of
data, dots above red line, the worst 2000 sentences
(18% of the data).

its bias the models to tag more words as “GOOD”,
i.e. the tagging is too optimistic, which results in
higher F1 score for the “GOOD” class and lower
F1 score for the “BAD” class. Since our primary
goal is improved F1 score for the “BAD” class, we
modified the training set to increase the percentage
of “BAD” labels.

In order to filter out sentences that have too few
errors, we performed a simple training data se-
lection strategy: we used only sentences with the
highest amount of editing. To define the optimal
number of sentences to select, we built models on
different number of training sentences from 1,000
to 11,000 (the entire dataset). Figure 2 shows the
learning curves for systems trained on increasing
numbers of sentences. Note that the sentences
we choose are sorted by their HTER score in de-
creasing order, i.e. the system trained on 1,000
sentences uses 1,000 sentences with the highest
HTER scores (1,000 worst sentences).

Models built trained using only the 2,000 worst
sentences have the best F1-BAD score using all
learning algorithms. These 2,000 sentences rep-
resent 18% of the total available data (data points
above the red line in Figure 1). This subset has
sentences with HTER scores ranging from 0.34 to
1 and mean value of 0.49.

The highest score is achieved by the CRF model
trained on ngram-bootstrapped data. However,
the data selection strategy changes the effect of
bootstrapping that we saw previously: the CRF

Figure 2: Performance of models trained on sub-
sets of training data (F1 for the “BAD” class).

Figure 3: Performance of systems trained on sub-
sets of training data (F1 for the “GOOD” class).

model without bootstrapping performs very simi-
larly on small data subsets (up to 5,000 sentences),
and even outperforms the CRF model with 1-to-N
bootstrapping. On the other hand, a CRF model
without bootstrapping is less stable: its quality
drops faster as new data is added. The Ran-
dom Forest classifier has lower prediction accu-
racy than CRF models, but is more stable than the
two models that have the highest scores on 2,000
sentences.

As shown in Figure 3, the learning curves in
terms of the F1-score for the “GOOD” class are
very different: the scores keeps increasing as
we add more training instances. However, after
adding 5,000 sentences the growth slows down.
Note also that the models that have the least stable
F1-BAD scores (CRF without bootstrapping and
with ngram bootstrapping) show the highest F1-
GOOD scores.

334

5 Official results of shared task

The experiments with data selection (Section 4)
showed that all models achieve their highest scores
when trained on a subset of 2,000 sentences of the
training data with highest HTER. The CRF model
with ngram bootstrapping yielded the highest F1-
BAD of 0.375. We selected this setting as our first
submission. Since we could not be sure that the
distribution of classes is the same in the develop-
ment and test sets, for the second submission we
chose the same model trained on 5,000 sentences,
to reach a balance between the F1-scores for the
“BAD” and the “GOOD” classes.

Table 3 summarises the final results. The F1-
BAD score of our first system for the test set is
0.366. This submission was ranked 4-th best out of
8. The second system performed worse at tagging
the test set: the final F1-BAD score is 0.345, which
places it in the 5-th position overall.

F1-BAD F1-GOOD Weigted F1
CRF ngram
2000 sent.

dev 0.375 0.738 0.669
test 0.366 0.744 0.673

CRF ngram
5000 sent.

dev 0.339 0.837 0.742
test 0.345 0.845 0.75

Table 3: Final submission results. Scores in bold
were used to compare systems submitted to the
shared task.

6 Conclusions

We presented the systems submitted by the
DCU-SHEFF team to the word-level QE task at
WMT15. Our systems were trained on a set of
baseline features released by the organisers of the
shared task. We predicted the QE labels using a
CRF model trained with CRF++ tool, which was
also used to produce the baseline scores.

The main difference between the baseline and
our models is that in our systems the training data
is filtered prior to training. We use only a small
subset of the training sentences which have the
highest HTER scores (i.e. the highest percentage
of words tagged with the “BAD” label). This led
to an increase in the F1 score for the “BAD” class
from 0.17 to 0.37.

We also suggested two bootstrapping strategies
based on using sub-sequences from the training
data as new training instances. These incom-
plete examples are particularly effective for train-
ing CRF models: we were able to improve the F1
score for the “BAD” class from 0.17 to 0.25. How-

ever, we were not able to achieve any improvement
when the bootstrapping was performed on top of
data filtering.

Acknowledgements

This work was supported by the People Pro-
gramme (Marie Curie Actions) of the European
Union’s Framework Programme (FP7/2007-2013)
under REA grant agreement no 317471.

References
Ondřej Bojar, Christian Buck, Chris Callison-Burch,

Christian Federmann, Barry Haddow, Philipp
Koehn, Christof Monz, Matt Post, Radu Soricut, and
Lucia Specia. 2013. Findings of the 2013 Work-
shop on Statistical Machine Translation. In Pro-
ceedings of the Eighth Workshop on Statistical Ma-
chine Translation, pages 1–44, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve
Saint-Amand, Radu Soricut, Lucia Specia, and Aleš
Tamchyna. 2014. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, pages 12–58, Baltimore, Maryland, USA, June.
Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In MT Summit X.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning, ICML
’01, pages 282–289, San Francisco, CA, USA. Mor-
gan Kaufmann Publishers Inc.

Ngoc Quang Luong, Laurent Besacier, and Benjamin
Lecouteux. 2014. Lig system for word level qe
task at wmt14. In Proceedings of the Ninth Work-
shop on Statistical Machine Translation, pages 335–
341, Baltimore, Maryland, USA, June. Association
for Computational Linguistics.

Sylvain Raybaud, David Langlois, and Kamel Smali.
2011. this sentence is wrong. detecting errors in
machine-translated sentences. Machine Translation,
25(1):1–34.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In AMTA-2006: 7th Conference of the Associa-
tion for Machine Translation in the Americas, pages
223–231, Cambridge, Massachusetts, USA.

335

