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1 System Combination

I combine the output of multiple strong systems to one hypothesis

I combination confusion network approach (used by e.g. BBN, IBM, JHU)

. combine confusion networks built from the individual system outputs

. confusion network scored by several models

. decoding similar phrase-based machine translation decoders

I Successfully applied in several evaluation campaigns
e.g. WMT [Freitag & Peitz+ 14], IWSLT [Freitag & Peitz+ 13],
NTCIR [Feng & Freitag+ 13], WMT [Peitz & Mansour+ 13], WMT [Freitag & Peitz+ 12]

I Part of open source statistical machine translation toolkit Jane
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Confusion Network Generation

I Select one of the input hypotheses as primary hypothesis

I Primary hypothesis determines the word order

. All remaining hypotheses are word-to-word aligned

I Pairwise alignments generated via GIZA++

I The confusion network can be constructed with the calculated alignment
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Decoding

I Do not stick to one primary hypothesis

I Final network is a union of all m (= amount individual systems) confusion
networks (each having a different system as primary system)

I Final Network is scored by M models in a log-linear framework

.
∑M

i=1 λihi

I Scaling factors optimized with MERT on n-best lists

I Shortest path algorithm to extract final hypothesis

I All graph operations are conducted with openFST [Allauzen & Riley+ 07]
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Features

Im binary system voting features

. For each word the voting feature for system i (1 ≤ i ≤ m) is 1 iff the word
is from system i, otherwise 0

I Binary primary system feature

. Feature that marks the primary hypothesis

I LM feature

. 3-gram language model trained on the input hypotheses

I Word penalty

. Counts the number of words
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2 Local System Voting Feature

Motivation:

I Binary voting features give preference to one or few individual systems

I Hypotheses with low voting feature weights have no effect on the final output

Idea:

I Define a local voting feature which give a score based on the current
sentence/words

I Train model by a feed-forward neural network (NN) to give also unseen events
a reliable score

I Related work from speech recognition: [Hillard & Hoffmeister+ 07] trained a
classifier to learn which word should be selected
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Neural Network Unigram Input Example
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I Best SBLEU path is labeled red
I 1-of-n encoding was applied to map words to a suitable NN input
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Neural Network Bigram Input Example
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I Taking history of the individual hypotheses into account
I 1-of-n encoding was applied to map words to a suitable NN input
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Neural Networks in System Combination

I Add one additional model based to the log-linear framework

I Training data:

. Split tuning set into 2 sets (one for NN training, one for MERT)

. Training samples cover only limited vocabulary
⇒ Use word classes

I Trainied using NPLM [Vaswani & Zhao+ 13]
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BOLT Arabic→English Results

system combination word tune test
classes BLEU TER BLEU TER

baseline 30.1 51.2 27.6 55.8

+unigram neural network model no 31.4 51.2 28.5 56.0
yes 31.1 51.1 28.3 55.7

+bigram neural network model no 31.3 51.1 28.4 55.8
yes 31.4 51.2 28.7 56.0

I 5 Systems

I 1510 sentences result in 6.5M training samples

I Test set has a OOV rate of 43.25%

I MERT tune set has a OOV rate of 43.24%
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BOLT Chinese→English Results

system combination word tune test
classes BLEU TER BLEU TER

baseline 17.9 61.5 18.3 60.9

+unigram neural network model no 18.1 61.2 18.3 60.3
yes 18.4 61.5 19.0 60.3

+bigram neural network model no 18.1 61.3 18.6 60.3
yes 18.1 61.2 18.7 59.9

I 9 Systems

I 1844 sentences result in 15M training samples

I Test set has a OOV rate of 40.73%

I MERT tune set has a OOV rate of 40.91%
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BOLT Chinese→English Analysis

# baseline +bigram wcNN
1 120/14072 (0.9%) 214/14072 (1.5%)
2 592/ 6129 (9.7%) 764/ 6129 (12.5%)
3 1141/ 4159 (27.4%) 1319/ 4159 (31.7%)
4 1573/ 3241 (48.5%) 1669/ 3241 (51.5%)
5 2051/ 2881 (71.2%) 1993/ 2881 (69.2%)
6 2381/ 2744 (86.8%) 2332/ 2744 (85.0%)
7 2817/ 2965 (95.0%) 2820/ 2965 (95.1%)
8 3818/ 3860 (98.9%) 3815/ 3860 (98.8%)
9 11008/11008 (100.0%) 11008/11008 (100.0%)

I More words created by a single or a few systems are used
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3 Conclusion

I Proposed novel local system voting model

I Using feedforward neural network models

I Allow confusion network to prefer other systems even in the same sentence

I Improved likelihood to select words created by only few systems

I Use word classes to avoid sparsity problem

I Improvements of 0.7% for Ch-En and 1.1% for Ar-En
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BOLT Arabic→English System

Arabic English
Sentences 8M
Running words 189M 186M
Vocabulary 608K 519K
Tune sentences 1510 (NN), 1080 (MERT)
Test sentences 1137

5 Systems
1510 sentences result in 6.5M training samples
Test set has a OOV rate of 43.25% MERT tune set has a OOV rate of 43.24%

M.Freitag Local System Voting Feature for MT System Combination 18 RWTH 17. September 2015



BOLT Chinese→English Systems

Chinese English
Sentences 13M
Running words 255M 279M
Vocabulary 370K 833K
Tune sentences 1844 (NN), 985 (MERT)
Test sentences 1124

9 Systems

1844 sentences result in 15M training samples
Test set has a OOV rate of 40.73% MERT tune set has a OOV rate of 40.91%
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