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Abstract

We present the results from the second
shared task on multimodal machine trans-
lation and multilingual image description.
Nine teams submitted 19 systems to two
tasks. The multimodal translation task, in
which the source sentence is supplemented
by an image, was extended with a new lan-
guage (French) and two new test sets. The
multilingual image description task was
changed such that at test time, only the
image is given. Compared to last year, mul-
timodal systems improved, but text-only
systems remain competitive.

1 Introduction

The Shared Task on Multimodal Translation and
Multilingual Image Description tackles the prob-
lem of generating descriptions of images for lan-
guages other than English. The vast majority of
image description research has focused on English-
language description due to the abundance of
crowdsourced resources (Bernardi et al., 2016).
However, there has been a significant amount of
recent work on creating multilingual image de-
scription datasets in German (Elliott et al., 2016;
Hitschler et al., 2016; Rajendran et al., 2016), Turk-
ish (Unal et al., 2016), Chinese (Li et al., 2016),
Japanese (Miyazaki and Shimizu, 2016; Yoshikawa
et al., 2017), and Dutch (van Miltenburg et al.,
2017). Progress on this problem will be useful
for native-language image search, multilingual e-
commerce, and audio-described video for visually
impaired viewers.

The first empirical results for multimodal trans-
lation showed the potential for visual context to

improve translation quality (Elliott et al., 2015;
Hitschler et al., 2016). This was quickly followed
by a wider range of work in the first shared task
at WMT 2016 (Specia et al., 2016). The current
shared task consists of two subtasks:

• Task 1: Multimodal translation takes an im-
age with a source language description that is
then translated into a target language. The
training data consists of parallel sentences
with images.

• Task 2: Multilingual image description
takes an image and generates a description in
the target language without additional source
language information at test time. The train-
ing data, however, consists of images with
independent descriptions in both source and
target languages.

The translation task has been extended to include
a new language, French. This extension means the
Multi30K dataset (Elliott et al., 2016) is now triple
aligned, with English descriptions translated into
both German and French.

The description generation task has substantially
changed since last year. The main difference is
that source language descriptions are no longer
observed for test images. This mirrors the real-
world scenario in which a target-language speaker
wants a description of image that does not already
have source language descriptions associated with
it. The two subtasks are now more distinct because
multilingual image description requires the use of
the image (no text-only system is possible because
the input contains no text).

Another change for this year is the introduction
of two new evaluation datasets: an extension of the
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existing Multi30K dataset, and a “teaser” evalua-
tion dataset with images carefully chosen to contain
ambiguities in the source language.

This year we encouraged participants to submit
systems using unconstrained data for both tasks.
Training on additional out-of-domain data is under-
explored for these tasks. We believe this setting
will be critical for future real-world improvements,
given that the current training datasets are small
and expensive to construct.

2 Tasks & Datasets

2.1 Tasks

The Multimodal Translation task (Task 1) follows
the format of the 2016 Shared Task (Specia et al.,
2016). The Multilingual Image Description Task
(Task 2) is new this year but it is related to the
Crosslingual Image Description task from 2016.
The main difference between the Crosslingual Im-
age Description task and the Multilingual Image
Description task is the presence of source language
descriptions. In last year’s Crosslingual Image De-
scription task, the aim was to produce a single
target language description, given five source lan-
guage descriptions and the image. In this year’s
Multilingual Image Description task, participants
received only an unseen image at test time, without
source language descriptions.

2.2 Datasets

The Multi30K dataset (Elliott et al., 2016) is the
primary dataset for the shared task. It contains
31K images originally described in English (Young
et al., 2014) with two types of multilingual data:
a collection of professionally translated German
sentences, and a collection of independently crowd-
sourced German descriptions.

This year the Multi30K dataset has been ex-
tended with new evaluation data for the Translation
and Image Description tasks, and an additional lan-
guage for the Translation task. In addition, we
released a new evaluation dataset featuring ambi-
guities that we expected would benefit from visual
context. Table 1 presents an overview of the new
evaluation datasets. Figure 1 shows an example of
an image with an aligned English-German-French
description.

In addition to releasing the parallel text, we also
distributed two types of ResNet-50 visual features
(He et al., 2016) for all of the images, namely the
‘res4 relu’ convolutional features (which preserve

En: A group of people are eating noddles.
De: Eine Gruppe von Leuten isst Nudeln.
Fr: Un groupe de gens mangent des nouilles.

Figure 1: Example of an image with a source de-
scription in English, together with German and
French translations.

the spatial location of a feature in the original im-
age) and averaged pooled features.

Multi30K French Translations
We extended the translation data in Multi30K
dataset with crowdsourced French translations. The
crowdsourced translations were collected from 12
workers using an internal platform. We estimate the
translation work had a monetary value of e9,700.
The translators had access to the source segment,
the image and an automatic translation created with
a standard phrase-based system (Koehn et al., 2007)
trained on WMT’15 parallel text. The automatic
translations were presented to the crowdworkers to
further simplify the crowdsourcing task. We note
that this did not end up being a post-editing task,
that is, the translators did not simply copy and paste
the suggested translations. To demonstrate this, we
calculated text-similarity metric scores between the
phrase-based system outputs and the human trans-
lations on the training corpus, resulting in 0.41 edit
distance (measured using the TER metric), mean-
ing that more than 40% of the words between these
two versions do not match.

Multi30K 2017 test data
We collected new evaluation data for the Multi30K
dataset. We sampled new images from five of
the six Flickr groups used to create the original
Flickr30K dataset using MMFeat (Kiela, 2016)1.
We sampled additional images from two themat-
ically related groups (Everything Outdoor and

1Strangers!, Wild Child, Dogs in Action, Action Photogra-
phy, and Outdoor Activities.
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Training set Development set

Images Sentences Images Sentences

Translation 29,000 29,000 1,014 1,014

Description 29,000 145,000 1,014 5,070

2017 test COCO

Images Sentences Images Sentences

Translation 1,000 1,000 461 461

Description 1,071 5,355 —

Table 1: Overview of the Multi30K training, development, 2017 test, and Ambiguous COCO datasets.

Group Task 1 Task 2

Strangers! 150 154

Wild Child 83 83

Dogs in Action 78 92

Action Photography 238 259

Flickr Social Club 241 263

Everything Outdoor 206 214

Outdoor Activities 4 6

Table 2: Distribution of images in the Multi30K
2017 test data by Flickr group.

Flickr Social Club) because Outdoor Activities
only returned 10 new CC-licensed images and
Flickr-Social no longer exists. Table 2 shows the
distribution of images across the groups and tasks.
We initially downloaded 2,000 images per Flickr
group, which were then manually filtered by three
of the authors. The filtering was done to remove
(near) duplicate images, clearly watermarked im-
ages, and images with dubious content. This pro-
cess resulted in a total of 2,071 images.

We crowdsourced five English descriptions of
each image from Crowdflower2 using the same pro-
cess as Elliott et al. (2016). One of the authors se-
lected 1,000 images from the collection to form the
dataset for the Multimodal Translation task based
on a manual inspection of the English descriptions.
Professional German translations were collected
for those 1,000 English-described images. The
remaining 1,071 images were used for the Multilin-
gual Image Description task. We collected five ad-

2http://www.crowdflower.com

ditional independent German descriptions of those
images from Crowdflower.

Ambiguous COCO

As a secondary evaluation dataset for the Multi-
modal Translation task, we collected and translated
a set of image descriptions that potentially con-
tain ambiguous verbs. We based our selection on
the VerSe dataset (Gella et al., 2016), which anno-
tates a subset of the COCO (Lin et al., 2014) and
TUHOI (Le et al., 2014) images with OntoNotes
senses for 90 verbs which are ambiguous, e.g. play.
Their goals were to test the feasibility of annotat-
ing images with the word sense of a given verb
(rather than verbs themselves) and to provide a
gold-labelled dataset for evaluating automatic vi-
sual sense disambiguation methods.

Altogether, the VerSe dataset contains 3,518 im-
ages, but we limited ourselves to its COCO section,
since for our purposes we also need the image de-
scriptions, which are not available in TUHOI. The
COCO portion covers 82 verbs; we further dis-
carded verbs that are unambiguous in the dataset,
i.e. although some verbs have multiple senses in
OntoNotes, they all occur with one sense in VerSe
(e.g. gather is used in all instances to describe the
‘people gathering’ sense), resulting in 57 ambigu-
ous verbs (2,699 images). The actual descriptions
of the images were not distributed with the VerSe
dataset. However, given that the ambiguous verbs
were selected based on the image descriptions, we
assumed that in all cases at least one of the origi-
nal COCO description (out of the five per image)
should contain the ambiguous verb. In cases where
more than one description contained the verb, we
randomly selected one such description to be part
of the dataset of descriptions containing ambiguous
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En: A man on a motorcycle is passing another
vehicle.
De: Ein Mann auf einem Motorrad fährt an einem
anderen Fahrzeug vorbei.
Fr: Un homme sur une moto dépasse un autre
véhicule.

En: A red train is passing over the water on a
bridge
De: Ein roter Zug fährt auf einer Brücke über
das Wasser
Fr: Un train rouge traverse l’eau sur un pont.

Figure 2: Two senses of the English verb ”to pass” in their visual contexts, with the original English and
the translations into German and French. The verb and its translations are underlined.

verbs. This resulted in 2,699 descriptions.
As a consequence of the original goals of the

VerSe dataset, each sense of each ambiguous verb
was used multiple times in the dataset, which re-
sulted in many descriptions with the same sense,
for example, 85 images (and descriptions) were
available for the verb show, but they referred to a
small set of senses of the verb.

The number of images (and therefore descrip-
tions) per ambiguous verb varied from 6 (stir) to
100 (pull, serve). Since our intention was to have a
small but varied dataset, we selected a subset of a
subset of descriptions per ambiguous verb, aiming
at keeping 1-3 instances per sense per verb. This
resulted in 461 descriptions for 56 verbs in total,
ranging from 3 (e.g. shake, carry) to 26 (reach)
(the verb lay/lie was excluded as it had only one
sense). We note that the descriptions include the
use of the verbs in phrasal verbs. Two examples
of the English verb “to pass” are shown in Figure
2. In the German translations, the source language
verb did not require disambiguation (both German
translations use the verb “fährt”), whereas in the
French translations, the verb was disambiguated
into “dépasse” and “traverse”, respectively.

3 Participants

This year we attracted submissions from nine dif-
ferent groups. Table 3 presents an overview of the
groups and their submission identifiers.

AFRL-OHIOSTATE (Task 1) The AFRL-
OHIOSTATE system submission is an atypical
Machine Translation (MT) system in that the
image is the catalyst for the MT results, and not the
textual content. This system architecture assumes
an image caption engine can be trained in a target
language to give meaningful output in the form
of a set of the most probable n target language
candidate captions. A learned mapping function
of the encoded source language caption to the
corresponding encoded target language captions
is then employed. Finally, a distance function is
applied to retrieve the “nearest” candidate caption
to be the translation of the source caption.

CMU (Task 2) The CMU submission uses a
multi-task learning technique, extending the base-
line so that it generates both a German caption
and an English caption. First, a German caption
is generated using the baseline method. After the
LSTM for the baseline model finishes producing
a German caption, it has some final hidden state.
Decoding is simply resumed starting from that final
state with an independent decoder, separate vocab-
ulary, and this time without any direct access to
the image. The goal is to encourage the model to
keep information about the image in the hidden
state throughout the decoding process, hopefully
improving the model output. Although the model
is trained to produce both German and English cap-
tions, at evaluation time the English component of
the model is ignored and only German captions are
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ID Participating team

AFRL-OHIOSTATE Air Force Research Laboratory & Ohio State University (Duselis et al., 2017)

CMU Carnegie Melon University (Jaffe, 2017)

CUNI Univerzita Karlova v Praze (Helcl and Libovický, 2017)

DCU-ADAPT Dublin City University (Calixto et al., 2017a)

LIUMCVC Laboratoire d’Informatique de l’Université du Maine & Universitat Autonoma
de Barcelona Computer Vision Center (Caglayan et al., 2017a)

NICT National Institute of Information and Communications Technology & Nara
Institute of Science and Technology (Zhang et al., 2017)

OREGONSTATE Oregon State University (Ma et al., 2017)

SHEF University of Sheffield (Madhyastha et al., 2017)

UvA-TiCC Universiteit van Amsterdam & Tilburg University (Elliott and Kádár, 2017)

Table 3: Participants in the WMT17 multimodal machine translation shared task.

generated.

CUNI (Tasks 1 and 2) For Task 1, the sub-
missions employ the standard neural MT (NMT)
scheme enriched with another attentive encoder for
the input image. It uses a hierarchical attention
combination in the decoder (Libovický and Helcl,
2017). The best system was trained with additional
data obtained from selecting similar sentences from
parallel corpora and by back-translation of similar
sentences found in the SDEWAC corpus (Faaß and
Eckart, 2013).

The submission to Task 2 is a combination of
two neural models. The first model generates an
English caption from the image. The second model
is a text-only NMT model that translates the En-
glish caption to German.

DCU-ADAPT (Task 1) This submission evalu-
ates ensembles of up to four different multimodal
NMT models. All models use global image fea-
tures obtained with the pre-trained CNN VGG19,
and are either incorporated in the encoder or the
decoder. These models are described in detail in
(Calixto et al., 2017b). They are model IMGW,
in which image features are used as words in the
source-language encoder; model IMGE, where im-
age features are used to initialise the hidden states
of the forward and backward encoder RNNs; and
model IMGD, where the image features are used
as additional signals to initialise the decoder hid-
den state. Each image has one corresponding fea-
ture vector, obtained from the activations of the

FC7 layer of the VGG19 network, and consist of a
4096D real-valued vector that encode information
about the entire image.

LIUMCVC (Task 1) LIUMCVC experiment
with two approaches: a multimodal attentive NMT
with separate attention (Caglayan et al., 2016)
over source text and convolutional image features,
and an NMT where global visual features (2048-
dimensional pool5 features from ResNet-50) are
multiplicatively interacted with word embeddings.
More specifically, each target word embedding is
multiplied with global visual features in an element-
wise fashion in order to visually contextualize word
representations. With 128-dimensional embed-
dings and 256-dimensional recurrent layers, the
resulting models have around 5M parameters.

NICT (Task 1) These are constrained submis-
sions for both language pairs. First, a hierarchi-
cal phrase-based (HPB) translation system s built
using Moses (Koehn et al., 2007) with standard
features. Then, an attentional encoder-decoder net-
work (Bahdanau et al., 2015) is trained and used
as an additional feature to rerank the n-best output
of the HPB system. A unimodal NMT model is
also trained to integrate visual information. Instead
of integrating visual features into the NMT model
directly, image retrieval methods are employed to
obtain target language descriptions of images that
are similar to the image described by the source
sentence, and this target description information
is integrated into the NMT model. A multimodal
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NMT model is also used to rerank the HPB output.
All feature weights (including the standard features,
the NMT feature and the multimodal NMT feature)
were tuned by MERT (Och, 2003). On the develop-
ment set, the NMT feature improved the HPB sys-
tem significantly. However, the multimodal NMT
feature did not further improve the HPB system
that had integrated the NMT feature.

OREGONSTATE (Task 1) The OREGON-
STATE system uses a very simple but effective
model which feeds the image information to both
encoder and decoder. On the encoder side, the
image representation was used as an initialization
information to generate the source words’ repre-
sentations. This step strengthens the relatedness
between image’s and source words’ representations.
Additionally, the decoder uses alignment to source
words by a global attention mechanism. In this way,
the decoder benefits from both image and source
language information and generates more accurate
target side sentence.

UvA-TiCC (Task 1) The submitted systems are
Imagination models (Elliott and Kádár, 2017),
which are trained to perform two tasks in a mul-
titask learning framework: a) produce the target
sentence, and b) predict the visual feature vector of
the corresponding image. The constrained models
are trained over only the 29,000 training examples
in the Multi30K dataset with a source-side vocab-
ulary of 10,214 types and a target-side vocabulary
of 16,022 types. The unconstrained models are
trained over a concatenation of the Multi30K, News
Commentary (Tiedemann, 2012) parallel texts, and
MS COCO (Chen et al., 2015) dataset with a joint
source-target vocabulary of 17,597 word pieces
(Schuster and Nakajima, 2012). In both constrained
and unconstrained submissions, the models were
trained to predict the 2048D GoogleLeNetV3 fea-
ture vector (Szegedy et al., 2015) of an image as-
sociated with a source language sentence. The
output of an ensemble of the three best randomly
initialized models - as measured by BLEU on the
Multi30K development set - was used for both the
constrained and unconstrained submissions.

SHEF (Task 1) The SHEF systems utilize the
predicted posterior probability distribution over the
image object classes as image features. To do so,
they make use of the pre-trained ResNet-152 (He et
al., 2016), a deep CNN based image network that
is trained over the 1,000 object categories on the

Imagenet dataset (Deng et al., 2009) to obtain the
posterior distribution. The model follows a stan-
dard encoder-decoder NMT approach using softdot
attention as described in (Luong et al., 2015). It
explores image information in three ways: a) to
initialize the encoder; b) to initialize the decoder;
c) to condition each source word with the image
class posteriors. In all these three ways, non-linear
affine transformations over the posteriors are used
as image features.

Baseline — Task 1 The baseline system for the
multimodal translation task is a text-only neural
machine translation system built with the Nema-
tus toolkit (Sennrich et al., 2017). Most settings
and hyperparameters were kept as default, with a
few exceptions: batch size of 40 (instead of 80
due to memory constraints) and ADAM as opti-
mizer. In order to handle rare and OOV words, we
used the Byte Pair Encoding Compression Algo-
rithm to segment words (Sennrich et al., 2016b).
The merge operations for word segmentation were
learned using training data in both source and target
languages. These were then applied to all training,
validation and test sets in both source and target
languages. In post-processing, the original words
were restored by concatenating the subwords.

Baseline — Task 2 The baseline for the multilin-
gual image description task is an attention-based
image description system trained over only the Ger-
man image descriptions (Caglayan et al., 2017b).
The visual representation are extracted from the
so-called res4f relu layer from a ResNet-50 (He et
al., 2016) convolutional neural network trained on
the ImageNet dataset (Russakovsky et al., 2015).
Those feature maps provide spatial information
on which the model focuses through the attention
mechanism.

4 Text-similarity Metric Results

The submissions were evaluated against either pro-
fessional or crowd-sourced references. All submis-
sions and references were pre-processed to low-
ercase, normalise punctuation, and tokenise the
sentences using the Moses scripts.3 The evalua-
tion was performed using MultEval (Clark et
al., 2011) with the primary metric of Meteor 1.5
(Denkowski and Lavie, 2014). We also report the
results using BLEU (Papineni et al., 2002) and

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
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TER (Snover et al., 2006) metrics. The winning
submissions are indicated by •. These are the top-
scoring submissions and those that are not signifi-
cantly different (based on Meteor scores) according
the approximate randomisation test (with p-value
≤ 0.05) provided by MultEval. Submissions
marked with * are not significantly different from
the Baseline according to the same test.

4.1 Task 1: English→ German

4.1.1 Multi30K 2017 test data

Table 4 shows the results on the Multi30K
2017 test data with a German target language.
It interesting to note that the metrics do not
fully agree on the ranking of systems, although
the four best (statistically indistinguishable) sys-
tems win by all metrics. All-but-one sub-
mission outperformed the text-only NMT base-
line. This year, the best performing systems
include both multimodal (LIUMCVC MNMT C
and UvA-TiCC IMAGINATION U) and text-only
(NICT NMTrerank C and LIUMCVC MNMT C)
submissions. (Strictly speaking, the UvA-
TiCC IMAGINATION U system is incomparable
because it is an unconstrained system, but all un-
constrained systems perform in the same range as
the constrained systems.)

4.1.2 Ambiguous COCO

Table 5 shows the results for the out-of-domain
ambiguous COCO dataset with a German target
language. Once again the evaluation metrics do not
fully agree on the ranking of the submissions.

It is interesting to note that the metric scores are
lower for the out-of-domain Ambiguous COCO
data compared to the in-domain Multi30K 2017 test
data. However, we cannot make definitive claims
about the difficulty of the dataset because the Am-
biguous COCO dataset contains fewer sentences
than the Multi30K 2017 test data (461 compared
to 1,000).

The systems are mostly in the same order as
on the Multi30K 2017 test data, with the same
four systems performing best. However, two sys-
tems (DCU-ADAPT MultiMT C and OREGON-
STATE 1NeuralTranslation C) are ranked higher
on this test set than on the in-domain Flickr dataset,
indicating that they are relatively more robust and
possibly better at resolving the ambiguities found
in the Ambiguous COCO dataset.

4.2 Task 1: English→ French

4.2.1 Multi30K Test 2017
Table 6 shows the results for the Multi30K 2017
test data with French as target language. A reduced
number of submissions were received for this new
language pair, with no unconstrained systems. In
contrast to the English→German results, the eval-
uation metrics are in better agreement about the
ranking of the submissions.

Translating from English→French is an easier
task than English→German systems, as reflected
in the higher metric scores. This also includes
the baseline systems where English→French re-
sults in 63.1 Meteor compared to 41.9 for
English→German.

Eight out of the ten submissions outperformed
the English→French baseline system. Two of the
best submissions for English→German remain the
best for English→French (LIUMCVC MNMT C
and NICT NMTrerank C), the text-only system
(LIUMCVC NMT C) decreased in performance,
and no UvA-TiCC IMAGINATION U system was
submitted for French.

An interesting observation is the difference
of the Meteor scores between text-only NMT
system (LIUMCVC NMT C) and Moses hier-
archical phrase-based system with reranking
(NICT NMTrerank C). While the two systems are
very close for the English→German direction, the
hierarchical system is better than the text-only
NMT systems in the English→French direction.
This pattern holds for both the Multi30K 2017 test
data and Ambiguous COCO test data.

4.2.2 Ambiguous COCO
Table 7 shows the results for the out-of-domain
Ambiguous COCO dataset with the French tar-
get language. Once again, in contrast to the
English→German results, the evaluation met-
rics are in better agreement about the ranking
of the submissions. The performance of all
the models is once again in mostly agreement
with the Multi30K 2017 test data, albeit lower.
Both DCU-ADAPT MultiMT C and OREGON-
STATE 2NeuralTranslation C again perform rela-
tively better on this dataset.

4.3 Task 2: English→ German

The description generation task, in which systems
must generate target-language (German) captions
for a test image, has substantially changed since
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BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC MNMT C 33.4 54.0 48.5
•NICT NMTrerank C 31.9 53.9 48.1
•LIUMCVC NMT C 33.2 53.8 48.2
•UvA-TiCC IMAGINATION U 33.3 53.5 47.5
UvA-TiCC IMAGINATION C 30.2 51.2 50.8
CUNI NeuralMonkeyTextualMT U 31.1 51.0 50.7
OREGONSTATE 2NeuralTranslation C 31.0 50.6 50.7
DCU-ADAPT MultiMT C 29.8 50.5 52.3
CUNI NeuralMonkeyMultimodalMT U 29.5 50.2 52.5
CUNI NeuralMonkeyTextualMT C 28.5 49.2 54.3
OREGONSTATE 1NeuralTranslation C 29.7 48.9 51.6
CUNI NeuralMonkeyMultimodalMT C 25.8 47.1 56.3
SHEF ShefClassInitDec C 25.0 44.5 53.8
SHEF ShefClassProj C 24.2 43.4 55.9
Baseline (text-only NMT) 19.3 41.9 72.2
AFRL-OHIOSTATE-MULTIMODAL U 6.5 20.2 87.4

Table 4: Official results for the WMT17 Multimodal Machine Translation task on the English-German
Multi30K 2017 test data. Systems with grey background indicate use of resources that fall outside the
constraints provided for the shared task.

BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC NMT C 28.7 48.9 52.5
•LIUMCVC MNMT C 28.5 48.8 53.4
•NICT 1 NMTrerank C 28.1 48.5 52.9
•UvA-TiCC IMAGINATION U 28.0 48.1 52.4
DCU-ADAPT MultiMT C 26.4 46.8 54.5
OREGONSTATE 1NeuralTranslation C 27.4 46.5 52.3
CUNI NeuralMonkeyTextualMT U 26.6 46.0 54.8
UvA-TiCC IMAGINATION C 26.4 45.8 55.4
OREGONSTATE 2NeuralTranslation C 26.1 45.7 55.9
CUNI NeuralMonkeyMultimodalMT U 25.7 45.6 55.7
CUNI NeuralMonkeyTextualMT C 23.2 43.8 59.8
CUNI NeuralMonkeyMultimodalMT C 22.4 42.7 60.1
SHEF ShefClassInitDec C 21.4 40.7 56.5
SHEF ShefClassProj C 21.0 40.0 57.8
Baseline (text-only NMT) 18.7 37.6 66.1

Table 5: Results for the Multimodal Translation task on the English-German Ambiguous COCO dataset.
Systems with grey background indicate use of resources that fall outside the constraints provided for the
shared task.
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BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC MNMT C 55.9 72.1 28.4
•NICT NMTrerank C 55.3 72.0 28.4
DCU-ADAPT MultiMT C 54.1 70.1 30.0
LIUMCVC NMT C 53.3 70.1 31.7
OREGONSTATE 2NeuralTranslation C 51.9 68.3 32.7
OREGONSTATE 1NeuralTranslation C 51.0 67.2 33.6
CUNI NeuralMonkeyMultimodalMT C 49.9 67.2 34.3
CUNI NeuralMonkeyTextualMT C 50.3 67.0 33.6
Baseline (text-only NMT) 44.3 63.1 39.6
*SHEF ShefClassInitDec C 45.0 62.8 38.4
SHEF ShefClassProj C 43.6 61.5 40.5

Table 6: Results for the Multimodal Translation task on the English-French Multi30K Test 2017 data.

BLEU ↑ Meteor ↑ TER ↓
•LIUMCVC MNMT C 45.9 65.9 34.2
•NICT NMTrerank C 45.1 65.6 34.7
•DCU-ADAPT MultiMT C 44.5 64.1 35.2
OREGONSTATE 2NeuralTranslation C 44.1 63.8 36.7
LIUMCVC NMT C 43.6 63.4 37.4
CUNI NeuralMonkeyTexutalMT C 43.0 62.5 38.2
CUNI NeuralMonkeyMultimodalMT C 42.9 62.5 38.2
OREGONSTATE 1NeuralTranslation C 41.2 61.6 37.8
SHEF ShefClassInitDec C 37.2 57.3 42.4
*SHEF ShefClassProj C 36.8 57.0 44.5
Baseline (text-only NMT) 35.1 55.8 45.8

Table 7: Results for the Multimodal Translation task on the English-French Ambiguous COCO dataset.
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BLEU ↑ Meteor ↑ TER ↓
Baseline (target monolingual) 9.1 23.4 91.4
CUNI NeuralMonkeyCaptionAndMT C 4.2 22.1 133.6
CUNI NeuralMonkeyCaptionAndMT U 6.5 20.6 91.7
CMU NeuralEncoderDecoder C 9.1 19.8 63.3
CUNI NeuralMonkeyBilingual C 2.3 17.6 112.6

Table 8: Results for the Multilingual Image Description task on the English-German Multi30K 2017 test
data.

last year. The main difference is that source lan-
guage descriptions are no longer observed for im-
ages at test time. The training data remains the
same and contains images with both source and
target language descriptions. The aim is thus to
leverage multilingual training data to improve a
monolingual task.

Table 8 shows the results for the Multilingual
image description task. This task attracted fewer
submissions than last year, which may be because it
was no longer possible to re-use a model designed
for Multimodal Translation. The evaluation metrics
do not agree on the ranking of the submissions,
with major differences in the ranking using either
BLEU or TER instead of Meteor.

The main result is that none of the sub-
missions outperform the monolingual German
baseline according to Meteor. All of the
submissions are statistically significantly dif-
ferent compared to the baseline. However,
the CMU NeuralEncoderDecoder C submission
marginally outperformed the baseline according
to TER and equalled its BLEU score.

5 Human Judgement Results

This year, we conducted a human evaluation in ad-
dition to the text-similarity metrics to assess the
translation quality of the submissions. This evalu-
ation was undertaken for the Task 1 German and
French outputs for the Multi30K 2017 test data.

This section describes how we collected the hu-
man assessments and computed the results. We
would like to gratefully thank all assessors.

5.1 Methodology

The system outputs were manually evaluated by
bilingual Direct Assessment (DA) (Graham et al.,
2015) using the Appraise platform (Federmann,
2012). The annotators (mostly researchers) were

asked to evaluate the semantic relatedness between
the source sentence in English and the target sen-
tence in German or French. The image was shown
along with the source sentence and the candidate
translation and evaluators were told to rely on the
image when necessary to obtain a better under-
standing of the source sentence (e.g. in cases where
the text was ambiguous). Note that the reference
sentence is not displayed during the evaluation, in
order to avoid influencing the assessor. Figure 3
shows an example of the direct assessment inter-
face used in the evaluation. The score of each trans-
lation candidate ranges from 0 (meaning that the
meaning of the source is not preserved in the target
language sentence) to 100 (meaning the meaning
of the source is “perfectly” preserved). The human
assessment scores are standardized according to
each individual assessor’s overall mean and stan-
dard deviation score. The overall score of a given
system (z) corresponds to the mean standardized
score of its translations.

5.2 Results

The French outputs were evaluated by seven asses-
sors, who conducted a total of 2,521 DAs, resulting
in a minimum of 319 and a maximum of 368 direct
assessments per system submission, respectively.
The German outputs were evaluated by 25 asses-
sors, who conducted a total of 3,485 DAs, resulting
in a minimum of 291 and a maximum of 357 direct
assessments per system submission, respectively.
This is somewhat less than the recommended num-
ber of 500, so the results should be considered
preliminary.

Tables 9 and 10 show the results of the hu-
man evaluation for the English to German and
the English to French Multimodal Translation task
(Multi30K 2017 test data). The systems are ordered
by standardized mean DA scores and clustered ac-
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Figure 3: Example of the human direct assessment evaluation interface.

cording to the Wilcoxon signed-rank test at p-level
p ≤ 0.05. Systems within a cluster are consid-
ered tied. The Wilcoxon signed-rank scores can be
found in Tables 11 and 12 in Appendix A.

When comparing automatic and human evalu-
ations, we can observe that they globally agree
with each other, as shown in Figures 4 and
5, with German showing better agreement than
French. We point out two interesting disagree-
ments: First, in the English→French language pair,
CUNI NeuralMonkeyMultimodalMT C and DCU-
ADAPT MultiMT C are significantly better than
LIUMCVC MNMT C, despite the fact that the lat-
ter system achieves much higher metric scores. Sec-
ondly, across both languages, the text-only LIUM-
CVC NMT C system performs well on metrics but
does relatively poorly on human judgements, es-
pecially as compared to the multimodal version of
the same system.

6 Discussion

Visual Features: do they help? Three teams
provided text-only counterparts to their multimodal
systems for Task 1 (CUNI, LIUMCVC, and ORE-
GONSTATE), which enables us to evaluate the
contribution of visual features. For many systems,
visual features did not seem to help reliably, at least
as measured by metric evaluations: in German,
the CUNI and OREGONSTATE text-only systems
outperformed the counterparts, while in French,
there were small improvements for the CUNI mul-
timodal system. However, the LIUMCVC multi-
modal system outperformed their text-only system

across both languages.

The human evaluation results are perhaps more
promising: nearly all the highest ranked systems
(with the exception of NICT) are multimodal.
An intruiging result was the text-only LIUM-
CVC NMT C, which ranked highly on metrics but
poorly in the human evaluation. The LIUMCVC
systems were indistinguishable from each other in
terms of Meteor scores but the standardized mean
direct assessment score showed a significant dif-
ference in performance (see Tables 11 and 12):
further analysis of the reasons for humans disliking
the text-only translations will be necessary.

The multimodal Task 1 submissions can be
broadly categorised into three groups based on
how they use the images: approaches useing
double-attention mechanisms, initialising the hid-
den state of the encoder and/or decoder networks
with the global image feature vector, and al-
ternative uses of image features. The double-
attention models calculate context vectors over
the source language hidden states and location-
preserving feature vectors over the image; these
vectors are used as inputs to the translation de-
coder (CUNI NeuralMonkeyMultimodalMT). En-
coder and/or decoder initialisation involves ini-
tialising the recurrent neural network with an
affine transformation of a global image fea-
ture vector (DCU-ADAPT MultiMT, OREGON-
STATE 1NeuralTranslation) or initialising the
encoder and decoder with the 1000 dimen-
sion softmax probability vector over the object
classes in ImageNet object recognition challenge
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Figure 4: System performance on the English→German Multi30K 2017 test data as measured by human
evaluation against Meteor scores. The AFRL-OHIOSTATE-MULTIMODAL U system has been ommitted
for readability.
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Figure 5: System performance on the English→French Multi30K 2017 test data as measured by human
evaluation against Meteor scores.
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English→German
# Raw z System

1 77.8 0.665 LIUMCVC MNMT C

2 74.1 0.552 UvA-TiCC IMAGINATION U

3 70.3 0.437 NICT NMTrerank C
68.1 0.325 CUNI NeuralMonkeyTextualMT U
68.1 0.311 DCU-ADAPT MultiMT C
65.1 0.196 LIUMCVC NMT C
60.6 0.136 CUNI NeuralMonkeyMultimodalMT U
59.7 0.08 UvA-TiCC IMAGINATION C
55.9 -0.049 CUNI NeuralMonkeyMultimodalMT C
54.4 -0.091 OREGONSTATE 2NeuralTranslation C
54.2 -0.108 CUNI NeuralMonkeyTextualMT C
53.3 -0.144 OREGONSTATE 1NeuralTranslation C
49.4 -0.266 SHEF ShefClassProj C
46.6 -0.37 SHEF ShefClassInitDec C

15 39.0 -0.615 Baseline (text-only NMT)
36.6 -0.674 AFRL-OHIOSTATE MULTIMODAL U

Table 9: Results of the human evaluation of the WMT17 English-German Multimodal Translation task
(Multi30K 2017 test data). Systems are ordered by standardized mean DA scores (z) and clustered
according to Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered tied,
although systems within a cluster may be statistically significantly different from each other (see Table 11).
Systems using unconstrained data are identified with a gray background.

(SHEF ShefClassInitDec). The alternative uses
of the image features include element-wise mul-
tiplication of the target language embeddings
with an affine transformation of a global im-
age feature vector (LIUMCVC MNMT), sum-
ming the source language word embeddings
with affine-transformed 1000 dimension soft-
max probability vector (SHEF ShefClassProj), us-
ing the visual features in a retrieval framework
(AFRL-OHIOSTATE MULTIMODAL), and learn-
ing visually-grounded encoder representations by
learning to predict the global image feature vec-
tor from the source language hidden states (UvA-
TiCC IMAGINATION).

Overall, the metric and human judgement results
in Sections 4 and 5 indicate that there is still a
wide scope for exploration of the best way to inte-
grate visual and textual information. In particular,
the alternative approaches proposed in the LIUM-
CVC MNMT and UvA-TiCC IMAGINATION
submissions led to strong performance in both the
metric and human judgement results, surpassing
the more common approaches using initialisation
and double attention.

Finally, the text-only NICT system ranks highly

across both languages. This system uses hierarchi-
cal phrase-based MT with a reranking step based on
a neural text-only system, since their multimodal
system never outperformed the text-only variant in
development (Zhang et al., 2017). This is in line
with last year’s results and the strong Moses base-
line (Specia et al., 2016), and suggests a continuing
role for phrase-based MT for small homogeneous
datasets.

Unconstrained systems The Multi30k dataset is
relatively small, so unconstrained systems use more
data to complement the image description transla-
tions. Three groups submitted systems using ex-
ternal resources: UvA-TiCC, CUNI, and AFRL-
OHIOSTATE. The unconstrained UvA-TiCC and
CUNI submissions always outperformed their re-
spective constrained variants by 2–3 Meteor points
and achieved higher standardized mean DA scores.
These results suggest that external parallel text cor-
pora (UvA-TiCC and CUNI) and external monolin-
gual image description datasets (UvA-TiCC) can
usefully improve the quality of multimodal transla-
tion models.

However, tuning to the target domain remains im-
portant, even for relatively simple image captions.
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English→French
# Raw z System

1 79.4 0.446 NICT NMTrerank C
74.2 0.307 CUNI NeuralMonkeyMultimodalMT C
74.1 0.3 DCU-ADAPT MultiMT C

4 71.2 0.22 LIUMCVC MNMT C
65.4 0.056 OREGONSTATE 2NeuralTranslation C
61.9 -0.041 CUNI NeuralMonkeyTextualMT C
60.8 -0.078 OREGONSTATE 1NeuralTranslation C
60.5 -0.079 LIUMCVC NMT C

9 54.7 -0.254 SHEF ShefClassInitDec C
54.0 -0.282 SHEF ShefClassProj C

11 44.1 -0.539 Baseline (text-only NMT)

Table 10: Results of the human evaluation of the WMT17 English-French Multimodal Translation
task (Multi30K 2017 test data). Systems are ordered by standardized mean DA score (z) and clustered
according to Wilcoxon signed-rank test at p-level p ≤ 0.05. Systems within a cluster are considered
tied, although systems within a cluster may be statistically significantly different from each other (see
Table 12).

We ran the best-performing English→German
WMT’16 news translation system (Sennrich et al.,
2016a) on the English→German Multi30K 2017
test data to gauge the performance of a state-of-
the-art text-only translation system trained on only
out-of-domain resources4. It ranked 10th in terms
of Meteor (49.9) and 11th in terms of BLEU (29.0),
placing it firmly in the middle of the pack, and be-
low nearly all the text-only submissions trained on
the in-domain Multi30K dataset.

The effect of OOV words The Multi30k trans-
lation training and test data are very similar, with
a low OOV rate in the Flickr test set (1.7%). In
the 2017 test set, 16% of English test sentences
include a OOV word. Human evaluation gave the
impression that these often led to errors propagated
throughout the whole sentence. Unconstrained sys-
tems may perform better by having larger vocabu-
laries, as well as more robust statistics. When we
evaluate the English→German systems over only
the 161 OOV-containing test sentences, the high-
est ranked submission by all metrics is the uncon-
strained UvA-TiCC IMAGINATION submission,
with +2.5 Metor and +2.2 BLEU over the second
best system (LIUMCVC NMT; 45.6 vs 43.1 Me-
teor and 24.0 vs 21.8 BLEU).

The difference over non-OOV-containing sen-

4http://data.statmt.org/rsennrich/
wmt16_systems/en-de/

tences is not nearly as stark, with constrained sys-
tems all performing best (both LIUMCVC systems,
MNMT and NMT, with 56.6 and 56.3 Meteor, re-
spectively) but unconstrained systems following
close behind (UvA-TiCC with 55.4 Meteor, CUNI
with 53.4 Meteor).

Ambiguous COCO dataset We introduced a
new evaluation dataset this year with the aim of
testing systems’ ability to use visual features to
identify word senses.

However, it is unclear whether visual features
improve performance on this test set. The text-only
NICT NMTrerank system performs competitively,
ranking in the top three submissions for both lan-
guages. We find mixed results for submissions
with text-only and multimodal counterparts (CUNI,
LIUMCVC, OREGONSTATE): LIUMCVC’s mul-
timodal system improves over the text-only system
for French but not German, while the visual fea-
tures help for German but not French in the CUNI
and OREGONSTATE systems.

We plan to perform a further analysis on the
extent of translation ambiguity in this dataset. We
will also continue to work on other methods for
constructing datasets in which textual ambiguity
can be disambiguated by visual information.

Multilingual Image Description It proved diffi-
cult for Task 2 systems to use the English data to
improve over the monolingual German baseline.
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In future iterations of the task, we will consider
a lopsided data setting, in which there is much
more English data than target language data. This
setting is more realistic and will push the use of
multilingual data. We also hope to conduct human
evaluation to better assess performance because au-
tomatic metrics are problematic for this task (Elliott
and Keller, 2014; Kilickaya et al., 2017).

7 Conclusions

We presented the results of the second shared task
on multimodal translation and multilingual image
description. The shared task attracted submissions
from nine groups, who submitted a total of 19 sys-
tems across the tasks. The Multimodal Transla-
tion task attracted the majority of the submissions.
Human judgements for the translation task were
collected for the first time this year and ranked
systems broadly in line with the automatic metrics.

The main findings of the shared task are:

(i) There is still scope for novel approaches to
integrating visual and linguistic features in
multilingual multimodal models, as demon-
strated by the winning systems.

(ii) External resources have an important role to
play in improving the performance of multi-
modal translation models beyond what can be
learned from limited training data.

(iii) The differences between text-only and mul-
timodal systems are being obfuscated by the
well-known shortcomings of text-similarity
metrics. Multimodal systems often seem to
be prefered by humans but not rewarded by
metrics. Future research on this topic, encom-
passing both multimodal translation and multi-
lingual image description, should be evaluated
using human judgements.

In future editions of the task, we will encourage
participants to submit the output of single decoder
systems to better understand the empirical differ-
ences between approaches. We are also considering
a Multilingual Multimodal Translation challenge,
where the systems can observe two language inputs
alongside the image to encourage the development
of multi-source multimodal models.
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