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Abstract

We describe the Universitat d’Alacant sub-
missions to the word- and sentence-level ma-
chine translation (MT) quality estimation (QE)
shared task at WMT 2018. Our approach to
word-level MT QE builds on previous work
to mark the words in the machine-translated
sentence as OK or BAD, and is extended to
determine if a word or sequence of words
need to be inserted in the gap after each word.
Our sentence-level submission simply uses the
edit operations predicted by the word-level ap-
proach to approximate TER. The method pre-
sented ranked first in the sub-task of identify-
ing insertions in gaps for three out of the six
datasets, and second in the rest of them.

1 Introduction

This paper describes the Universitat d’Alacant sub-
missions to the word- and sentence-level machine
translation (MT) quality estimation (QE) shared
task at WMT 2018 (Specia et al., 2018). Our
approach is an extension of a previous approach
(Esplà-Gomis et al., 2015a,b; Esplà-Gomis et al.,
2016) in which we simply marked the words tj of a
machine-translated segment T as OK (no changes
are needed) or as BAD (needing editing). Now we
also mark the gaps γj after each word tj as OK
(no insertions are needed) or as BAD (needing the
insertion of one or more words). In addition, we
use the edit operations predicted at the word level
to estimate quality at the sentence level.

The paper is organized as follows: section 2
briefly reviews previous work on word-level MT
QE; section 3 describes the method used to label
words and gaps, paying special attention to the
features extracted (sections 3.1 and 3.2) and the
neural network (NN) architecture and its training
(section 3.3); section 4 describes the datasets used;
section 5 shows the main results; and, finally, sec-
tion 6 closes the paper with concluding remarks.

2 Related work

Pioneering work on word-level MT QE dealt with
predictive/interactive MT (Gandrabur and Foster,
2003; Blatz et al., 2004; Ueffing and Ney, 2005,
2007), often under the name of confidence esti-
mation. Estimations relied on the internals of the
actual MT system —for instance, studying the n-
best translations (Ueffing and Ney, 2007)— or used
external sources of bilingual information; for in-
stance, both Blatz et al. (2004) and Ueffing and
Ney (2005) used probabilistic dictionaries; in the
case of Blatz et al. (2004), as one of many features
in a binary classifier for each word.

The last decade has witnessed an explosion of
work in word-level MT QE, with most of the recent
advances made by participants in the shared tasks
on MT QE at the different editions of the Confer-
ence on Statistical Machine Translation (WMT).
Therefore, we briefly review those papers related
to our approach: those using an external bilingual
source such as an MT system and those using NN.

As regards work using external bilingual re-
sources, we can highlight four groups of contri-
butions:

• To estimate the sentence-level quality of MT
output for a source segment S, Biçici (2013)
chooses sentence pairs from a parallel corpus
which are close to S, and builds an SMT sys-
tem whose internals when translating S are
examined to extract features.
• MULTILIZER, one of the participants in the

sentence-level MT QE task at WMT 2014 (Bo-
jar et al., 2014) uses other MT systems to
translate S into the target language (TL) and
T into the source language (SL). The results
are compared to the original SL and TL seg-
ments to obtain indicators of quality.
• Blain et al. (2017) use bilexical embeddings

(obtained from SL and TL word embeddings
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and word-aligned parallel corpora) to model
the strength of the relationship between SL
and TL words, in order to estimate sentence-
level and word-level MT quality.
• Finally, Esplà-Gomis et al. (2015a,b), and

Esplà-Gomis et al. (2016) perform word-level
MT QE by using other MT systems to trans-
late sub-segments of S and T and extracting
features describing the way in which these
translated sub-segments match sub-segments
of T . This is the work most related to the one
presented in this paper.

Only the last two groups of work actually tackle
the problem of word-level MT QE, and none of
them are able to identify the gaps where insertions
are needed.

As regards the use of neural networks (NN) in
MT QE, we can highlight a few contributions:

• Kreutzer et al. (2015) use a deep feed-forward
NN to process the concatenated vector embed-
dings of neighbouring TL words and (word-
aligned) SL words into feature vectors —
extended with the baseline features provided
by WMT15 (Bojar et al., 2015) organizers—
to perform word-level MT QE.
• Martins et al. (2016) achieved the best results

in the word-level MT QE shared task at WMT
2016 (Bojar et al., 2016) by combining a feed-
forward NN with two recurrent NNs whose
predictions were fed into a linear sequential
model together with the baseline features pro-
vided by the organizers of the task. An ex-
tension (Martins et al., 2017) uses the output
of an automatic post-editing tool, with a clear
improvement in performance.
• Kim et al. (2017a,b) obtained in WMT

2017 (Bojar et al., 2017) results which were
better or comparable to those by Martins et al.
(2017), using a three-level stacked architec-
ture trained in a multi-task fashion, combin-
ing a neural word prediction model trained
on large-scale parallel corpora, and word- and
sentence-level MT QE models.

Our approach uses a much simpler architecture than
the last two approaches, containing no recurrent
NNs, but just feed-forward NNs applied to a fixed-
length context window around the word or gap
about which a decision is being made (similarly to a
convolutional approach). This makes our approach
easier to train and parallelize.

3 Method

The approach presented here builds on previous
work by the same authors (Esplà-Gomis et al.,
2015a,b; Esplà-Gomis et al., 2016) in which inser-
tion positions were not yet predicted and a slightly
different feature set was used. As in the origi-
nal papers, here we use black-box bilingual re-
sources from the Internet. In particular, we use,
for each language pair, the statistical MT phrase
tables available at OPUS1 to spot sub-segment cor-
respondences between the SL segment S and its
machine translation T into the TL (see section 4.2
for details). This is done by dividing both S and
T into all possible (overlapping) sub-segments, or
n-grams, up to a certain maximum length.2 These
sub-segments are then translated into the TL and
the SL, respectively, by means of the phrase tables
mentioned (lowercasing of sub-segments before
and after translation is used to increase the chance
of a match). These sub-segment correspondences
are then used to extract several sets of features that
are fed to a feed-forward NN in order to label the
words and the gaps between words as OK or as
BAD. One of the main advantages of this approach,
when compared to the other approaches described
below, is that it uses simple string-level bilingual
information extracted from a publicly available
source to build features that allow us to easily esti-
mate quality for the words and inter-word gaps in
T .

3.1 Features for word deletions

We define three sets of features to detect the words
to be deleted: one taking advantage of the sub-
segments τ that appear in T , Keepn(·); another
one that uses the translation frequency with which a
sub-segment σ in S is translated as the sub-segment
τ in T , Freqkeepn (·); and a third one that uses the
alignment information between T and τ and which
does not require τ to appear as a contiguous sub-
segment in T , Alignkeepn (·).

Features for word deletions based on sub-
segment pair occurrences (Keep) Given a set
of sub-segment pairs M = {(σ, τ)} coming from
the union of several phrase tables, the first set of
features, Keepn(·), is obtained by computing the
amount of sub-segment translations (σ, τ) ∈ M
with |τ | = n that confirm that word tj in T should
be kept in the translation of S. A sub-segment

1http://opus.nlpl.eu/
2For our submission, we used L = 5.
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translation (σ, τ) confirms tj if σ is a sub-segment
of S, and τ is an n-word sub-segment of T that
covers position j. This set of features is defined as
follows:

Keepn(j, S, T,M) =

=
|{τ : (σ, τ) ∈ confkeepn (j, S, T,M)}|
|{τ : τ ∈ segn(T ) ∧ j ∈ span(τ, T )}|

where segn(X) represents the set of all possible
n-word sub-segments of segment X , and func-
tion span(τ, T ) returns the set of word positions
spanned by the sub-segment τ in the segment
T ; if τ is found more than once in T , it re-
turns all the possible positions spanned. Function
confkeepn (j, S, T,M) returns the collection of sub-
segment pairs (σ, τ) that confirm a given word tj ,
and is defined as:

confkeepn (j, S, T,M) =
= {(σ, τ) ∈ matchn(M,S, T ) : j ∈ span(τ, T )}

where matchn(M,S, T )) is the set of phrase pairs
(σ, τ) ∈ M such that σ ∈ seg∗(S) and τ ∈
segn(T ), and where seg∗(S) = ∪∞n=1segn(S).

3

Features for word deletions based on sub-
segment pair occurrences using translation fre-
quency (Freqkeepn ) The second set of features
uses the probabilities of subsegment pairs. To ob-
tain these probabilities from a set of phrase tables,
we first use the count of joint occurrences of (σ, τ)
provided in each phrase table. Then, when look-
ing up a SL sub-segment σ, the probability p(τ |σ)
is computed across all phrase tables from the ac-
cumulated counts. Finally, we define Freqkeepn (·)
as:

Freqkeepn (j, S, T,M) =

=
∑

(σ,τ)∈confkeepn (j,S,T,M)

p(τ |σ).

Features for word deletions based on word
alignments of partial matches (Alignkeepn ) The
third set of features takes advantage of partial
matches, that is, of sub-segment pairs (σ, τ) in
which τ does not appear as such in T . This set of
features is defined as:

Alignkeepn (j, S, T,M, e) =

=
∑

τ∈segs edopn(j,S,T,M,e)

|LCS(τ, T )|
|τ |

(1)

3Esplà-Gomis et al. (2015a) conclude that constraining
only the length of τ leads to better results than constraining
both σ and τ .

where LCS(X,Y ) returns the word-based longest
common sub-sequence between segments X and
Y , and segs edopn(j, S, T,M, e) returns the set
of sub-segments τ of length n from M that are a
translation of a sub-segment σ from S and in which,
after computing the LCS with T , the j-th word tj
is assigned the edit operation e:4

segs edopn(j, S, T,M, e) =
= {(τ : (σ, τ) ∈M ∧ σ ∈ seg∗(S)
∧ |τ | = n ∧ editop(tj , T, τ) = e}

(2)

where editop(tj , T, τ) returns the edit operation
assigned to tj and e is either delete or match.
If e = match the resulting set of features pro-
vides evidence in favour of keeping the word tj
unedited, whereas when e = delete it provides
evidence in favour of removing it. Note that fea-
tures Alignkeepn (·) are the only ones to provide ex-
plicit evidence that a word should be deleted.

The three sets of features described so far,
Keepn(·), Freqkeepn (·), and Alignkeepn (·), are com-
puted for tj for all the values of sub-segment length
n ∈ [1, L]. Features Keepn(·) and Freqkeepn (·)
are computed by querying the collection of sub-
segment pairs M in both directions (SL–TL and
TL–SL). Computing Alignkeepn (·) only queries M
in one direction (SL–TL) but is computed twice:
once for the edit operation match, and once for
the edit operation delete.

3.2 Features for insertion positions

In this section, we describe three sets of features
—based on those described in section 3.1 for word
deletions— designed to detect insertion positions.
The main difference between them is that the for-
mer apply to words, while the latter apply to gaps;
we will call γj the gap after word tj .5

Features for insertion positions based on sub-
segment pair occurrences (NoInsert) The first
set of features, NoInsertn(·), based on the
Keepn(·) features for word deletions, is defined
as follows:

NoInsertn(j, S, T,M) =

|{τ : (σ, τ) ∈ confnoinsn (j, S, T,M)}|
|{τ : τ ∈ segn(T ) ∧ [j, j + 1] ⊆ span(τ, T )}|

4Note that the sequence of edit operations needed to trans-
form X in Y is a by-product of computing LCS(X,Y ); these
operations are insert, delete or match (when the corre-
sponding word does not need to be edited).

5Note that the index of the first word in T is 1, and gap γ0
corresponds to the space before the first word in T .
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where function confnoinsn (j, S, T,M) returns the
collection of sub-segment pairs (σ, τ) covering a
given gap γj , and is defined as:

confnoinsn (j, S, T,M) =
{(σ, τ) ∈ matchn(M,S, T ) :

[j, j + 1] ⊆ span(τ, T )}

NoInsertn(·) accounts for the number of times that
the translation of sub-segment σ from S makes it
possible to obtain a sub-segment τ that covers the
gap γj , that is, a τ that covers both tj and tj+1. If a
word is missing in gap γj , one would expect to find
fewer sub-segments τ that cover this gap, therefore
obtaining low values for NoInsertn(·), while if
there are no words missing in γj , one would expect
more sub-segments τ to cover the gap, therefore
obtaining values of NoInsertn(·) closer to 1. In
order to be able to identify insertion positions be-
fore the first word or after the last word, we use
imaginary sentence boundary words t0 and t|T |+1,
which can also be matched,6 thus allowing us to
obtain evidence for gaps γ0 and γ|T |.

Features for insertion positions based on sub-
segment pair occurrences using translation fre-
quency (Freqnoinsn ) Analogously to Freqkeepn (·)
above, we define the feature set Freqnoinsn (·), now
for gaps:

Freqnoinsn (j, S, T,M) =

=
∑

(σ,τ)∈confnoinsn (j,S,T,M)

p(τ |σ)

Features for insertion positions based on word
alignments of partial matches (Alignnoinsn ) Fi-
nally, the set of features Alignkeepn (·) for word dele-
tions can be easily repurposed to detect the need for
insertions by setting the edit operation e in eq. (1)
to match and insert and redefining eq. (2) as

segs edopn(j, S, T,M, e) = {τ : (σ, τ) ∈M
∧ σ ∈ seg∗(S) ∧ |τ | = n
∧ editop(tj , τ, T ) = e}

where the LCS is computed between τ and T ,
rather than the other way round.7 We shall refer
to this last set of features for insertion positions as
Alignnoinsn (·).

6These boundary words are annotated in M when this
resource is built.

7It is worth noting that LCS(X,Y ) = LCS(Y,X), but
the sequences of edit operations obtained as a by-product are
different in each case.

The sets of features for insertion positions,
NoInsertn(·), Freqnoinsn (·) and Alignnoinsn (·), are
computed for gap γj for all the values of sub-
segment length n ∈ [2, L]. As in the case of the
feature sets employed to detect deletions, the first
two sets are computed by querying the set of sub-
segment pairsM via the SL or via the TL, while the
latter can only be computed by querying M via the
SL for the edit operations insert and match.

3.3 Neural network architecture and training
We use a two-hidden-layer feed-forward NN to
jointly predict the labels (OK or BAD) for word tj
and gap γi, using features computed at word posi-
tions ti−C , ti−C+1, . . . , ti−1, ti, ti+1, . . . , ti+C−1,
ti+C and at gaps γi−C , γi−C+1, . . . , γi−1, γi,
γi+1, . . . , γi+C−1, γi+C , where C represents the
amount of left and right context around the word
and gap being predicted.

The NN architecture has a modular first layer
with ReLU activation functions, in which the fea-
ture vectors for each word and gap, with F and G
features respectively, are encoded into intermedi-
ate vector representations (“embeddings”) of the
same size; word features are augmented with the
baseline features provided by the organizers. The
weights for this first layer are the same for all words
and for all gaps (parameters are tied). A second
layer of ReLU units combines these representa-
tions into a single representation of the same length
(2C +1)(F +G). Finally, two sigmoid neurons in
the output indicate, respectively, if word ti has to
be tagged as BAD, or if gap γi should be labelled
as BAD. Preliminary experiments confirmed that
predicting word and gap labels with the same NN
led to better results than using two independent
NNs.

The output of each of the sigmoid output units
is additionally independently thresholded (Lipton
et al., 2014) using a line search to establish thresh-
olds that optimize the product of the F1 score for
OK and BAD categories on the development sets.
This is done since the product of the F1 scores is
the main metric of comparison of the shared task,
but it cannot be directly used as the objective func-
tion of the training as it is not differentiable.

Training was carried out using the Adam stochas-
tic gradient descent algorithm to optimize cross-
entropy. A dropout regularization of 20% was ap-
plied on each hidden layer. Training was stopped
when results on the development set did not im-
prove for 10 epochs. In addition, each network was
trained 10 times with different uniform initializa-

817



tions (He et al., 2015), choosing the parameter set
performing best on the development set.

Preliminary experiments have led us to choose
a value C = 3 for the number of words and gaps
both to the left and to the right of the word and
gap for which a prediction is being made; smaller
values such a C = 1 gave, however, a very similar
performance.

4 Experimental setting

4.1 Datasets provided by the organizers
Six datasets were provided for the shared task on
MT QE at WMT 2018 (Specia et al., 2018), cov-
ering four language pairs —English–German (EN–
DE), German–English (DE–EN), English–Latvian
(EN–LV), and English–Czech (EN–CS)— and two
MT systems —statistical MT (SMT) and neural
MT (NMT). Each dataset is split into training, de-
velopment and test sets. From the data provided by
the organizers of the shared task, the approach in
this paper used:

1. set of segments S in source language,
2. set of translations T of the SL segment pro-

duced by an MT system,
3. word-level MT QE gold predictions for each

word and gap in each translation T , and
4. baseline features8 for word-level MT QE.

Regarding the baseline features, the organiz-
ers provided 28 features per word in the dataset,
from which we only used the 14 numeric features
plus the part-of-speech category (one-hot encoded).
This was done for the sake of simplicity of our
architecture. It is worth mentioning that no valid
baseline features were provided for the EN–LV
datasets. In addition, the large number of part-of-
speech categories in the EN–CS dataset led us to
discard this feature in this case. As a result, 121
baseline features were obtained for EN–DE (SMT),
122 for EN–DE (NMT), 123 for DE-EN (SMT), 14
for EN–CS (SMT), and 0 for EN–LV (SMT) and
EN–LV (NMT).

4.2 External bilingual resources
As described above, our approach uses ready-made,
publicly available phrase tables as bilingual re-
sources. In particular, we have used the cleaned
phrase tables available on June 6, 2018 in OPUS for

8https://www.quest.dcs.shef.ac.uk/
quest_files/features_blackbox_baseline_
17

the language pairs involved. These phrase tables
were built on a corpus of about 82 million pairs of
sentences for DE–EN, 7 million for EN–LV, and
61 million for EN–CS. Phrase tables were avail-
able only for one translation direction and some of
them had to be inverted (for example, in the case
of EN–DE or EN–CS).

5 Results

This section describes the results obtained by the
UAlacant system in the MT QE shared task at
WMT 2018 (Specia et al., 2018), which are re-
ported in Table 1. Our team participated in two
sub-tasks: sentence-level MT QE (task 1) and word-
level MT QE (task 2). For sentence-level MT QE
we computed the number of word-level operations
predicted by our word-level MT QE approach and
normalized it by the length of each segment T , in
order to obtain a metric similar to TER. The words
tagged as BAD followed by gaps tagged as BAD
were counted as replacements, the rest of words
tagged as BAD were counted as deletions, and the
rest of gaps tagged as BAD were counted as one-
word insertions.9 This metric was used to partici-
pate both in the scoring and ranking sub-tasks.

Columns 2 to 5 of Table 1 show the results ob-
tained for task 1 in terms of the Pearson’s correla-
tion r between predictions and actual HTER, mean
average error (MAE), and root mean squared error
(RMSE), as well as Sperman’s correlation ρ for
ranking.

Columns 6 to 11 show the results for task 2
in terms of F1 score both for categories OK and
BAD,10 together with the product of both F1 scores,
which is the main metric of comparison of the task.
The first three columns contain the results for the
sub-task of labelling words while the last three
columns 9 to 11 contain the results for the sub-task
of labelling gaps.

As can be seen, the best results were obtained
for the language pair DE–EN (SMT). Surprisingly,
the results obtained for EN–LV (NMT) were also
specially high for word-level and sentence-level
MT QE. These results for the latter language pair
are unexpected for two reasons: first, because no
baseline features were available for word-level MT

9Note that this approach is rather limited, as it ignores
block shifts and the number of words to be inserted in a gap,
which are basic operations to compute the actual TER value.

10For word deletion identification, a word marked as BAD
means that the word needs to be deleted, while in the case of
insertion position identification, if a gap is marked as BAD it
means that one or more words need to be inserted there.
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sentence-level word-level (words) word-level (gaps)
Dataset r MAE RMSE ρ FBAD FOK FMULTI FBAD FOK FMULTI

EN–DE SMT 0.45 0.15 0.19 0.44 0.35 0.81 0.29 0.33 0.96 0.32
EN–DE NMT 0.35 0.14 0.20 0.41 0.22 0.86 0.19 0.12 0.98 0.12
DE–EN SMT 0.63 0.12 0.17 0.60 0.43 0.87 0.37 0.33 0.97 0.32
EN–LV SMT 0.36 0.20 0.26 0.34 0.27 0.82 0.22 0.15 0.94 0.14
EN–LV NMT 0.56 0.17 0.22 0.55 0.44 0.80 0.36 0.17 0.95 0.16
EN–CS SMT 0.43 0.18 0.23 0.46 0.42 0.75 0.31 0.15 0.95 0.15

Table 1: Results for sentence-level MT QE (columns 2–5) in terms of the Pearson’s correlation r, MAE, RMSE,
and Sperman’s correlation ρ (for ranking). Results for the task of word labelling (columns 6–8) and gap labelling
(columns 9–11) in terms of the F1 score for class BAD (FBAD), the F1 score for class OK (FOK) and the product of
both (FMULTI).

QE task for this language pair, and second, because
the size of the parallel corpora from which phrase
tables for this language pair were extracted were
an order of magnitude smaller. One may think that
the coverage of machine translation by the phrase
tables could have an impact on these results. To
confirm this, we checked the fraction of words in
each test set that were not covered by any sub-
segment pair (σ, τ). This fraction ranges from 15%
to 4% depending on the test set, and has the low-
est value for EN–LV (NMT); however, it is not
clear that a higher coverage always leads to a better
performance as one of the datasets with a better
coverage was EN–LV (SMT) (5%) which, in fact,
obtained the worst results in our experiments.

It is worth noting that, when looking at the
results obtained by other participants, the differ-
ences in performance between the different datasets
seems to be rather constant, showing, for example,
a drop in performance for EN–DE (NMT) and EN–
LV (SMT); this lead us to think that the test set
might be more difficult in these cases. One thing
that we could confirm is that, for these two datasets,
the ratio of OK/BAD samples for word-level MT
QE is lower, which may make the classification
task more difficult.

In comparison with the rest of systems participat-
ing in this task, UAlacant was the best-performing
one in the sub-task of labelling gaps for 3 out of the
6 datasets provided (DE–EN SMT, EN–LV SMT,
and EN–LV NMT). Results obtained for the sub-
task of labelling words were poorer and usually in
the lower part of the classification. However, the
sentence-level MT QE submissions, which build
on the labels predicted for words and gaps by the
word-level MT QE system, performed substan-
tially better and outperformed the baseline for all
the datasets but EN–DE (NMT) and, for EN–LV

(NMT), it even ranked third.
As said above, one of the main advantages of

this approach is that it can be trained with limited
computational resources. In our case, we trained
our systems on a AMD Opteron(tm) Processor
6128 CPU with 16 cores and, for the largest set
of features (dataset DE–EN SMT), training took
2,5 hours, about 4 minutes per epoch.11

6 Concluding remarks

We have presented a simple MT word-level QE
method that matches the content of publicly avail-
able statistical MT phrase pairs to the source seg-
ment S and its machine translation T to produce a
number of features at each word and gap. To pre-
dict if the current word has to be deleted or if words
have to be inserted in the current gap, the features
for the current word and gap and C words and gaps
to the left and to the right are processed by a two-
hidden-layer feed-forward NN. When compared
with other participants in the WMT 2018 shared
task, our system ranks first in labelling gaps for 3
of the 6 language pairs, but does not perform too
well in labelling words. We also used word-level
estimations to approximate TER. We participated
with this approximation in the sentence-level MT
QE sub-task obtaining a reasonable performance
ranking, for almost all datasets, above the baseline.

One of the main advantages of the work pre-
sented here is that it does not require huge compu-
tational resources, and it can be trained even on a
CPU in a reasonable time.
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chyna. 2014. Findings of the 2014 Workshop on
Statistical Machine Translation. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion, pages 12–58, Baltimore, MD, USA.
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