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Abstract

We present the results of the first task on Large-
Scale Multilingual Machine Translation. The
task consists on the many-to-many evaluation
of a single model across a variety of source
and target languages. This year, the task con-
sisted on three different settings: (i) SMALL-
TASK1 (Central/South-Eastern European Lan-
guages), (ii) the SMALL-TASK2 (South East
Asian Languages), and (iii) FULL-TASK (all
101 x 100 language pairs). All the tasks
used the FLORES-101 datasetas the evaluation
benchmark. To ensure the longevity of the
dataset, the test sets were not publicly released
and the models were evaluated in a controlled
environment on Dynabench.There were a total
of 10 participating teams for the tasks, with a
total of 151 intermediate model submissions
and 13 final models. This year’s result show a
significant improvement over the known base-
lines with +17.8 BLEU for SMALL-TASK2,
+10.6 for FULL-TASK and +3.6 for SMALL-
TASK1.

1 Introduction

Despite recent advances in translation quality for
a handful of languages and domains, MT systems
still perform poorly on low-resource languages.
Yet, most of the world’s population speak low-
resource languages and would benefit from im-
provements in translation quality on their native
languages. As a result, the field has been shift-
ing focus towards the evaluation of MT in low-
resource situations (Thu et al., 2016; Guzmán et al.,
2019; Barrault et al., 2020; ∀ et al., 2020; Ebrahimi
et al., 2021; Kuwanto et al., 2021). However, these
efforts have had poor coverage of low-resource
languages which limits our understanding on gen-
eralization.More importantly, there has been little
focus on the evaluation of true many-to-many mul-
tilingual models, which hampers the progress of
the field despite all the recent excitement on this
research direction (Fan et al., 2020).

The recent release of the FLORES-101 (Goyal
et al., 2021) benchmark made possible to evaluate
massively multilingual systems in a consistent way.
The benchmark consists of 3001 sentences sam-
pled from English Wikipedia and professionally
translated in 101 languages. This poses a unique
opportunity to understand translation across many
languages with varied typology, resources, etc.

In this first multilingual large-scale shared task,
we use the FLORES-101 benchmark to evaluate
the progress on massively multilingual translation,
where the evaluation is performed in a non-English-
centric way. We propose 3 different tasks: two
small tasks involving translation between 6 lan-
guages each (30 pairs), and a large task involving
the translation across 101 languages (10K pairs).
In the remainder of this paper, we describe the task
setup, the participants, and the official results for
the task. We also analyze the results to understand
better the languages for which progress has been
attained, and those where a gap in quality is still
observed. Finally, we propose future directions for
other tasks in the future.

2 Shared tasks

In this section, we briefly describe each of the tasks,
the data, the baselines and metric used for evalua-
tion.

2.1 Languages

The languages and statistics for the languages in
the small tasks can be observed in Table 1, while
the statistics for the complete set of languages in
the full task can be obtained in Goyal et al. (2021).

SMALL-TASK1 - This task consisted of English
and Central and South-Eastern European Lan-
guages: Croatian, Estonian, Hungarian, Macedo-
nian, Serbian. These languages were chosen by
their low availability of resources, geographical
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ISO 639-3 Language Family Subgrouping Script Bitext Mono
w/ En Data

SMALL-TASK1
hrv Croatian Indo-European Balto-Slavic Latin 42.2K 144M
est Estonian Uralic Uralic Latin 4.82M 46M
hun Hungarian Uralic Uralic Latin 16.3M 385M
mkd Macedonian Indo-European Balto-Slavic Cyrillic 1.13M 28.8M
srp Serbian Indo-European Balto-Slavic Cyrillic 7.01M 35.7M

SMALL-TASK2
ind Indonesian Austronesian Austronesian Latin 39.1M 1.05B
jav Javanese Austronesian Austronesian Latin 1.49M 24.4M
msa Malay Austronesian Austronesian Latin 968K 77.5M
tam Tamil Dravidian Dravidian Tamil 992K 68.2M
tgl Filipino (Tagalog) Austronesian Austronesian Latin 70.6K 107M

Table 1: Languages in each of the small tasks. We include the ISO 639-3 code, the language family, and script.
We also include the amount of resources available in OPUS as reported by Goyal et al. (2021)

.

proximity, language family diversity (Balto-Slavic,
Uralic and Germanic), and different scripts.

SMALL-TASK2 This task consisted of English
and South-Eastern Asian languages: Javanese, In-
donesian, Malay, Filipino (Tagalog) and Tamil.
These were chosen by their low-resource nature,
geographical proximity and relatedness to a high-
resource language (Indonesian).

FULL-TASK This task consisted of all 101 lan-
guages in the FLORES-101 benchmark, including
English.

2.2 The evaluation data

The original sentences in FLORES-101 were
sourced in English, from a broad group of top-
ics that could be of general interest regardless of
the native language of the reader. The sentences
were sampled equally from Wikinews, Wikijunior
and WikiVoyage by selecting an article randomly
from each domain, and then selecting 3 to 5 con-
tiguous sentences (not considering segments with
very short or malformed sentences).

All source sentences were sent to a Language
Service Provider (LSP) for translation into 101 lan-
guages. After that, the data was sent to different
translators within the LSP for editing and quality
assessment which then moved on to an automated
quality control setup to ensure that the translation
quality score was at least 90 on a scale of 0-100.

2.3 The baselines

Fan et al. (2021) worked on creating a Many-to-
Many translation model, but it did not have the
full coverage of languages in FLORES-101. Hence,

we used the extended model trained in Goyal et al.
(2021) which was supplemented with OPUS data
and extended to 124 total languages. We trained
two different sizes of models with 615M and 175M
parameters.

2.4 Evaluation Metric

Automatically evaluating translation quality us-
ing BLEU is suboptimal as it relies on n-gram
overlap which is heavily dependent on the par-
ticular tokenization used. The challenge of mak-
ing BLEU comparable by using equivalent tok-
enization schemes has been partially addressed by
sacrebleu (Post, 2018). Ideally, the automatic
evaluation process should be robust, simple and
can be applied to any language without the need to
specify any particular tokenizer, as this will make
it easier for researchers to compare against each
other.

Towards this goal, we trained a SentencePiece
(SPM) tokenizer (Kudo and Richardson, 2018)
with 256K tokens using the CC100 monolingual
data1 (Conneau et al., 2020; Wenzek et al., 2020)
from all the FLORES-101 languages. SPM is a sys-
tem that learns subword units based on untokenized
training data, providing a universal tokenizer that
can operate on any language. One challenge is that
the amount of monolingual data available for dif-
ferent languages is not the same — an effect that is
extreme when considering low-resource languages.
Languages with small quantities of data may not
have the same level of coverage in subword units,
or an insufficient quantity of sentences to repre-
sent a diverse enough set of content. To address

1http://data.statmt.org/cc-100/

http://data.statmt.org/cc-100/
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this, we train our SPM model with temperature up-
sampling similar to Conneau et al. (2020), so that
low-resource languages are represented. Finally,
to compute BLEU, we apply SPM tokenization to
the system output and the reference, and then cal-
culate BLEU in the space of sentence-pieces. Due
to the difference in tokenization, spBLEU scores
are not strictly comparable across different target
languages. However, to compare different models,
here we use averages across the same set of target
languages assuming that difference in tokenizations
do not favor any specific model. In Goyal et al.
(2021) this metric is described as spBLEU, but in
this paper we use BLEU and spBLEU interchange-
ably.

3 Participants

In this section, we list each of the task participants
and briefly describe each of their submissions. For
reproducibility, we link to each of the model sub-
mitted, available in the Dynabench platform.

eBay (Liao et al., 2021) This submissions com-
pares different kind of back-translation settings to
improve the baseline model. They compare dif-
ferent generation algorithms: top-5 beam search;
regular decoding without beam search; regular de-
coding with sampling from top-10 words. Contrary
to Edunov et al. (2018), they find that top-10 de-
coding works best. They also consider how much
English data should be used for the back transla-
tion (since it’s more abundant than for the other
languages). The models are trained from scratch
using iterative back translation. Models: model
440 (SMALL-TASK1), model 441 (SMALL-TASK2),
model 425 (FULL-TASK)

Huawei-TSC (Yu et al., 2021) The Huawei-
TSC’s team use a deep transformer encoder-
decoder architecture (Sun et al., 2019), and fo-
cus their efforts on a combination of heuristics
for data preprocessing, synthetic data generation,
fine-tuning language-specific layers, and ensemble
knowledge distillation. Compared to their base-
line transformer on devtest, they get +2.8 BLEU
from the synthetic data generation, +0.5 BLEU
from layer fine tuning, and +0.8 BLEU from the
ensemble knowledge distillation. Models: model
439 (SMALL-TASK2)

LMU (Lai et al., 2021) The LMU team’s sub-
mission was based on a multilingual model, which
were improved based on two techniques: (i) Tagged

back-translation originating from bilingual models
(+1.6 above back-translation coming from a multi-
lingual)2; (ii) data selection w.r.t to the dev/devtest
corpora following (Axelrod et al., 2011). Models:
model 444 (SMALL-TASK1)

Maastricht University (Liu and Niehues, 2021)
This submission trained a single multilingual Ma-
chine translation system by training on all 30 direc-
tions of track 2 languages. They mainly adapted
the released pretrained M2M-100 model. They also
did some data filtering to create a cleaner version of
training corpus. Also they created synthetic pairs
by taking parallel source to pivot language transla-
tion dataset and automatically translating pivot lan-
guage sentences into target language, which gives
0.5 BLEU score improvement. They also tried
similarity regularizer and language specific adapter
weight which give 0.2 BLEU score gains overall.
Models: model 445 (SMALL-TASK2)

Microsoft (Yang et al., 2021) The Microsoft
team participated in all three tasks. The submission
is based on the newly-released pretrained model
DeltaLM (Ma et al., 2021a). The final submis-
sion to the shared task uses a mixture of direct and
pivoted translation to improve the performance of
individual directions, depending on whether the
direct or pivoted models perform best. The mix-
ture results in an improvement of +3.63 BLEU for
the FULL-TASK, over their baseline architecture
(24/12), but smaller improvements for the SMALL-
TASK2. In addition, the models use progressive
learning, which starts with a smaller architecture,
noisier training data, and later changes to improve
performance. The model also uses a combination
of parallel, back-translated and noisy-parallel data
(obtained for langs. X and Y from back-translating
into X and Y) Models: model 483 (FULL-TASK)
model 448 (SMALL-TASK1) model 457 (SMALL-
TASK2)

MMTAfrica (Emezue and Dossou, 2021) This
submission creates a non-English-centric multilin-
gual translation system focusing on six African lan-
guages (Igbo, Kinyarwanda, Fon, Swahili, Xhosa,
Yoruba) and English and French. The system starts
from mT5 (Xue et al., 2021) and finetunes it on
parallel data with additional monolingual data used

2Authors hypothesized that the difference in performance
could be due to the implicit self-training coming from a multi-
lingual model, as opposed to the diversity introduced by a
bilingual model.

https://dynabench.org/models/440
https://dynabench.org/models/440
https://dynabench.org/models/441
https://dynabench.org/models/425
https://dynabench.org/models/439
https://dynabench.org/models/439
https://dynabench.org/models/444
https://dynabench.org/models/445
https://dynabench.org/models/483
https://dynabench.org/models/448
https://dynabench.org/models/457
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for online backtranslation (Sennrich et al., 2016).
To cover Fon and Kinyarwanda, which are not in-
cluded in FLORES-101, a small new test set was
created. Compared to the small baseline models
provided in Goyal et al. (2021), significant improve-
ments were obtained.

Samsung RPH - Konvergen AI (Sutawika and
Cruz, 2021) The submission of the Samsung Re-
search Philippines/Kovergen AI’s team focuses on
the languages in SMALL-TASK2, in particular on
data preprocessing. For large-scale multilingual
models, the importance of preprocessing has risen
as researchers focus on using web crawls or nois-
ily aligned data to train translation models. In this
submission, various different preprocessing tech-
niques are applied while holding the model and
architecture fixed. The authors have gains of more
than 1 BLEU point from improving preprocessing.
Models: model 443 (SMALL-TASK2)

TenTrans (Xie et al., 2021) The submission ex-
plores several techniques to improve performance.
It focuses on two systems: TenTrans and FLO-
RES101, although the second one is favored in
later experimentation. The authors achieve large
improvements in performance by using a the pre-
trained M2M124 FLORES101 model. Main ben-
efit comes from in-domain knowledge adaptation
and fine-tuning. The authors use a domain classifier
based on BERT. Then they use gradual fine-tuning
to gradually removing the least-likely in-domain
sentence pairs at the later stages of training. They
also explore other techniques, including model av-
eraging that help to improve the performance of
their system. Models: model 460 (SMALL-TASK2)

TelU-KU (Budiwati et al., 2021) The team from
TelU-KU participated in SMALL-TASK2. Their ap-
proach explores an interesting alternative of im-
proving NMT performance via hyper-parameter
optimization (most promising for low resource lan-
guages). Although simple, this approach effec-
tively provides improvements by +1.08 BLEU on
top of the small baseline and opens up a promising
direction for hyper-parameter optimization. Mod-
els: model 465 (SMALL-TASK2)

UMD (Bandyopadhyay et al., 2021) This sys-
tem build upon the baseline M2M-124 model (Fan
et al., 2020). It includes two improvements: (i) fine-
tuning over MultiCCAligned; (ii) it uses ReLUs,
which improve +0.8 BLEU over GELUs. In ad-

dition, the final system is the result of an exten-
sive hyper-parameter optimization. Interestingly,
the authors find that using the bible for finetuning
improves performance over the baseline model de-
spite its small size (only about 0.5 BLEU behind
MultiCCAligned). Models: model 304 (SMALL-
TASK2)

4 Evaluation Environment

All models were evaluated within the Dynaboard
evaluation-as-a-service framework (Ma et al.,
2021b) that is a part of the Dynabench plat-
form (Kiela et al., 2021). This was done to ensure
that the FLORES test set remains hidden while we
evaluate many-to-many translation. Moreover, the
testing conditions were constrained to a p2.xlarge
AWS instance, which has one NVIDIA K80 GPU.

All model submissions had to be wrapped in a
torchserve3 handler and were required to follow
a fixed input/output specification using Dynalab4.
Submitting a system to the task required writing
some wrapper code, and often testing different con-
figurations (e.g. batch size), to ensure that the
model was able to run under the constraints.

Given the additional work needed to run the eval-
uation, participants were encouraged to test the
platform and to submit models early on. To avoid
fine-tuning on the devtest set, we established a sub-
mission cap of one model per day.

In total, we had 81 distinct model submissions
for the small task2 (South-East Asian Languages),
57 distinct submissions to the small task1 (Central
/ South-East European Languages), and 13 model
submissions to the full task. During the evaluation
period, participants were requested to mark a model
as their final submission. In the end, we had 10
final submissions to the small task2, 4 to the small
task 1 and 3 to the full task.

In Figure 1 we observe the total number of sub-
missions per day. We can see that the total number
of submissions per day remained low (less than
5) until August, where the number of submissions
reached 16 per day.

5 Results

Present the analysis of the results for each of the
tasks. Furthermore, we analyze the progress made
for each task, that is, how much improvement has

3https://pytorch.org/serve
4https://github.com/facebookresearch/dynalab

https://dynabench.org/models/443
https://dynabench.org/models/460
https://dynabench.org/models/465
https://dynabench.org/models/304
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Figure 1: Submissions to the shared task through Dynabench per day. As expected, we see a rise in the number of
submissions towards the end of the evaluation period.

there been between the baselines and the best mod-
els. Lastly, we analyze the difference between the
models for the full task and each of the smaller
tasks.

5.1 Main Results

In Table 2 we observe the final results for each of
the shared tasks. From the results we observe that
the DeltaLM model from the Microsoft team per-
forms best by a large margin on the SMALL-TASK1
(+2.6 BLEU) and FULL-TASK (+9.1 BLEU), but
the margin is smaller for the SMALL-TASK2 (0.6
BLEU). Below, analyze each task’s results indepen-
dently.

BLEU

SMALL-TASK1 (CSE European langs)
Microsoft 37.59
eBay 34.96
LMU 31.86
baseline M2M-615 28.23
baseline M2M-175 21.33

SMALL-TASK2 (SE Asian langs)
Microsoft 33.89
eBay 33.34
TenTrans 28.89
Maastricht University 28.64
Huawei-TSC 28.40
Samsung RPH/ Konvergen AI 22.97
baseline M2M-615 16.11
UMD 15.72
TelU-KU 13.19
baseline M2M-175 12.30

FULL-TASK (all langs)
Microsoft 16.63
eBay 7.55
baseline M2M-175 6.05

Table 2: Official results for the three shared tasks in the
large-scale multilingual machine translation task

SMALL-TASK1 In the Central/South-East Euro-
pean languages we observed that the model pre-
trained with DeltaLM performed best, followed by
eBay’s model by a margin of 2.6 BLEU. In this task
we observe that the progress between the M2M-615
baseline and the next best system of 3.6 BLEU.

SMALL-TASK2 In the South-East Asian lan-
guages task, there were many more submissions
than in the other tasks. We see a smaller gap be-
tween the first and second models. These two mod-
els are very different, one using a large pre-trained
language model, while the other one trains from
scratch and uses iterative back translation. There
is also a second cluster formed by the submission
of the next three models, with a gap less than 0.5
BLEU among them. In this cluster, two models
are based on the pre-trained M2M model while
the third one is trained from scratch. Six out of
eight participants perform better than the M2M-
615 baseline, while all participants perform better
than the M2M-175 baseline. The gap between the
best system and the M2M-615 baseline is of 17.8
BLEU.

FULL-TASK In the full task we had fewer submis-
sions, possibly due to the difficulty and resources
to train an evaluate such models. Here the gap
between the best and second-best models is signifi-
cant, around 9 BLEU. However, note that the gap
between the best systems and the baseline is much
smaller (∼10.6 BLEU), denoting how much harder
is translating more languages with similarly sized
models.
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5.2 Analysis of the progress on quality

One interesting aspect that we can analyze is how
much progress has there been since the release of
M2M-100 (Fan et al., 2020), and its subsequent
adaptation for FLORES101, M2M-124. Here, we
break down the improvements by language pairs to
understand better the changes in performance.

Note that looking at spm-BLEU numbers across
target languages can be deceiving. This is due to
the different spm vocabularies that are used for
each target language. However, for the sake of sim-
plicity in the following analyses we assume that:
(i) relative improvements (deltas) are comparable
across language pairs, (ii) averages of relative im-
provements from two different source languages
(say English and Hausa) into the remaining 101 lan-
guages are roughly comparable, even though the
average for Hausa on the source doesn’t contain
on the target Hausa and contains English, and the
average for English on the source doesn’t contain
English on the target but contains Hausa.

5.2.1 Progress on SMALL-TASK1
SMALL-TASK1 is constrained and encompasses
Central and South-East European Languages. In
Table 3 we see that the top performing pairs (most
progress) are into and out of English, while the
worst performing ones include Croatian and Mace-
donian. The gap between the best and the worst
performing pairs is of 13 BLEU, yet on average,
translation across language pairs improved 11.3
BLEU.

Source Target ∆BLEU

Best 5
English Serbian 19.08
Serbian English 15.58
Macedonian English 14.81
Estonian English 14.17
Hungarian English 13.37

Worst 5
Hungarian Croatian 9.05
Macedonian Croatian 8.09
Croatian Macedonian 6.96
Serbian Macedonian 6.49
Serbian Croatian 6.13

Average: 11.32

Table 3: Progress in quality for the best and worst lan-
guage pairs in SMALL-TASK1

In Table 4 we present the average progress for
languages in the source or target, and we observe
the following: there was more progress in translat-

Source ∆BLEU Target ∆BLEU

English 14.20 English 13.97
Macedonian 11.65 Serbian 13.58
Estonian 11.43 Hungarian 10.96
Hungarian 11.22 Estonian 10.91
Serbian 9.84 Macedonian 9.47
Croatian 9.58 Croatian 9.02

Table 4: Average progress for each of the languages in
SMALL-TASK1

ing from English than any other language. How-
ever, the gap between the best and worst is less
than 5 BLEU. When looking at the performance
when translating into each of the task languages,
we see a very similar tendency: English tops the
list, Croatian is at the bottom, and the gap between
best performing and worst performing languages is
less than 5 BLEU.

5.3 Progress on SMALL-TASK2

For SMALL-TASK2, there was a significant
progress on languages like Tamil (tam) and Tagalog
(tgl). In Table 5 we see a progress of 30+ BLEU
for translation between Tamil <> English. This
is encouraging, as the baseline model had issues
translating from/into Tamil. It is also encouraging
to see that even for the translation between Malay
<> Indonesian (which was strong to begin with),
we see more than 10+ BLEU improvement. On
average, we see an improvement of 21.8 across
all directions. It’s important to note the fact that
all submissions for this task were constrained, so
these improvements come from better modeling
and training techniques.

Another aspect to note comes from Table 6,
where we see that the language with most progress
is Tamil, followed by English and Tagalog. On the
other hand, in this case we see more disparity on
the progress between the languages with most and
least progress. For instance, it is harder to translate
into Javanese, which only improves 14.7 BLEU on
average.

5.3.1 Progres on FULL-TASK

In Table 7 we present the deltas between the best
scores in the competition for each language pair,
and the baseline. We observe that there are signifi-
cant improvements for certain languages, particu-
larly: Welsh (cym), Irish (gle), Maltese (mlt) and
their pairings with English. These are languages for
which the original M2M model was doing poorly,
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Source Target ∆BLEU

Best 5
English Tamil 32.63
English Tagalog 31.04
Tagalog English 30.16
Tamil English 30.00
Indonesian Tamil 28.45

Worst 5
Tagalog Javanese 14.67
Malay Javanese 12.40
Indonesian Malay 11.59
Indonesian Javanese 11.05
Malay Indonesian 10.45

Average: 21.75

Table 5: Progress in quality for the best and worst lan-
guage pairs in SMALL-TASK2

Source ∆BLEU Target ∆BLEU

Tamil 24.35 Tamil 27.29
English 24.30 Tagalog 25.29
Tagalog 23.19 English 24.68
Javanese 20.68 Malay 19.72
Indonesian 19.13 Indonesian 18.81
Malay 18.88 Malay 14.74

Table 6: Average progress for each of the languages in
SMALL-TASK2

yet the DeltaLM model is doing much better 5. In
fact, as seen in Fig. 2, these language pairs are
an exception, and most language pairs fall around
the 11 BLEU improvement range. The average
improvement across language pairs is 10.6 BLEU.
However, there are several language pairs for which
there was no progress at all. In Fig. 2, close to 10%
(∼1K pairs) have less than 5 BLEU improvement.

5Since this is an unconstrained submission, it is hard to
know what data went into the models. However, we hypoth-
esize that the improvement is likely due to the amount of
training data available for DeltaLM. As pointed out in Yang
et al. (2021) their model contains about 300K sentences for
Maltese (mt), 1.5M sentences for Irish (ga), and 3M sentences
for Welsh (cy)

Source Target ∆BLEU

Best 5
English Welsh 46.41
Irish English 43.55
English Irish 43.10
Maltese Welsh 42.88
Irish Maltese 41.83

Average: 10.60

Table 7: Progress in quality for the best and worst lan-
guage pairs in FULL-TASK. Note that we exclude the
worst performing pairs, which made no progress at all.

0 10 20 30 40
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400
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Figure 2: Distribution of improvements in BLEU for
different language pairs in the full task

To facilitate the analysis of the progress across
languages, in Fig. 3 we present the improvements
by language groupings. We see big improvements
coming from Other Indo-European (influenced by
Irish, Welsh), Dravidian (influenced by Tamil, Tel-
ugu), Austronesian (influenced by Tagalog). How-
ever we note that there is very little progress for
African Languages as represented by the Bantu and
Nilotic subgroups. Another interesting finding is
that progress trends to be lower when translating
into harder languages.

In summary, there is large progress for a few
languages, but sadly, there is little progress made
for very low-resource languages, particularly those
unrelated to other major languages.

5.4 Moderately Multilingual vs. Massively
Multilingual

A natural question that arises is: what is the gap that
remains between what we’re calling moderately
multilingual models (MoM), i.e models handle just
a few languages and a couple dozen pairs; vs. the
massively multilingual models (M2M) that handle
hundreds of languages and tens of thousand pairs?

To analyze this aspect, we compare the best mod-
els for the full task, and each of the small tasks.

5.4.1 SMALL-TASK1 vs. FULL-TASK

In Figure 4 we present the scores of the best system
for task1 (MoM) vs. the best system for the full task
(M2M). Here we observe that there is a consistent
gap of about 4.7 BLEU between the MoM and
the M2M models when averaging across source
languages. We can observe on the distribution of
deltas of performance that drops in performance
are similarly distributed across languages. This
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Figure 3: Average BLEU improvements per languages
in the source and target language families

suggests that the curse of multilinguality (Conneau
et al., 2020), i.e. the loss in performance by adding
more languages into to a model with fixed capacity,
affects equally the encoding of different languages
to a rate of about 0.05 BLEU per language added to
the model. This is encouraging, as it suggests that
encoding is robust to the addition of new languages.

On the other hand, when we look at the target
side the picture is quite different. Particularly, we
observe more variation in performance, ranging
from -2.7 BLEU for English to -6.8 BLEU for Ser-
bian. We hypothesize that these differences could
be due to a combination of factors: (i) amount of
supervision (which would explain why English per-
formance doesn’t drop as much), (ii) additional
supervision from similar languages, (iii) morpho-
logical richness (which would explain why Hungar-
ian and Estonian are more affected), and (iv) script
usage (which would explain why Serbian is more
affected than Croatian). However, proving these
hypotheses is beyond the scope of this paper.

5.4.2 SMALL-TASK2 vs. FULL-TASK

In Figure 5 we present the scores of the best system
for task2 (MoM) vs. the best system for the full
task (M2M). Here we see again that the model
with more parameters per language is still ahead by
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Figure 4: Comparison of average performances of the
best systems in the FULL-TASK and SMALL-TASK1 by
source and target languages
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Figure 5: Comparison of average performances of the
best systems in the FULL-TASK and SMALL-TASK2 by
source and target languages

about 4.26 BLEU. We also observe more variability
in the distribution of drops in performance, notably,
Javanese, the lowest resource language, being the
most different to the others.

On the target side, we observe that English is
ahead of the curve, showing the least regression.
On the other hand Javanese and Tamil further rein-
force our observations that additional supervision
and morphology play an important role in decoding
performance.

5.5 African Languages

While not officially a track on this year’s com-
petition, Emezue and Dossou (2021) focused on
the task of multilingual machine translation for
African languages that are in FLORES-101. They
introduced MMTAfrica, the first many-to-many
multilingual translation system for six African lan-
guages: Fon (fon), Igbo (ibo), Kinyarwanda (kin),
Swahili/Kiswahili (swa), Xhosa (xho), and Yoruba
(yor) and two non-African languages: English (eng)
and French (fra). For multilingual translation con-
cerning African languages, a novel backtranslation
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and reconstruction objective, BT&REC, was in-
troduced which is inspired by the random online
back translation and T5 modelling framework re-
spectively, to effectively leverage monolingual data.
Additionally, MMTAfrica improves over the FLO-
RES 101 benchmarks (BLEU gains ranging from
+0.58 in Swahili to French to +19.46 in French to
Xhosa).

6 Conclusion and Future Work

In this paper we presented the first iteration of the
large-scale multilingual translation task. This task
attracted several teams from across the globe and
many models submissions. We kept the test set
blind and used a platform to evaluate model sub-
missions under a controlled environment. In this
task, we observed significant progress in translation
quality across tasks, but particularly in the small
tasks. We observed that pre-trained language mod-
els and large amounts of back-translation (either
at one go, or in iterative fashion) were important
tools used by many participants.

We observed that models that have to translate
fewer languages trend to do better on average, and
that lower resources and morphology complicate
translation, particularly for decoding. We also ob-
served that languages in certain groups, like the
African languages in the Bantu and Nilotic fami-
lies, experience little to no improvement.

In the future, we want to organize shared tasks
with languages for which little or no progress was
achieved this time around. Additionally, we want
to open up the FLORES evaluation setup to other
organizers interested groups of languages within
the FLORES-101 set.
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