
Proceedings of the Second Workshop on Statistical Machine Translation, pages 17–24,
Prague, June 2007. c©2007 Association for Computational Linguistics

Integration of an Arabic Transliteration Module into a Statistical
Machine Translation System

Mehdi M. Kashani+, Eric Joanis++, Roland Kuhn++, George Foster++, Fred Popowich+

+ School of Computing Science
Simon Fraser University
8888 University Drive

Burnaby, BC V5A 1S6, Canada
mmostafa@sfu.ca
 popowich@sfu.ca

++ NRC Institute for Information Technology
101 St-Jean-Bosco Street

Gatineau, QC K1A 0R6, Canada
firstname.lastname@cnrc-nrc.gc.ca

Abstract

We provide an in-depth analysis of the in-
tegration of an Arabic-to-English translit-
eration system into a general-purpose
phrase-based statistical machine translation
system. We study the integration from dif-
ferent aspects and evaluate the improve-
ment that can be attributed to the integra-
tion using the BLEU metric. Our experi-
ments show that a transliteration module
can help significantly in the situation where
the test data is rich with previously unseen
named entities. We obtain 70% and 53% of
the theoretical maximum improvement we
could achieve, as measured by an oracle on
development and test sets respectively for
OOV words (out of vocabulary source
words not appearing in the phrase table).

1 Introduction

Transliteration is the practice of transcribing a
word or text written in one writing system into an-
other writing system. The most frequent candidates
for transliteration are person names, locations, or-
ganizations and imported words. The lack of a
fully comprehensive bilingual dictionary including
the entries for all named entities (NEs) renders the
task of transliteration necessary for certain natural
language processing applications dealing with
named entities. Two applications where translitera-
tion can be particularly useful are machine transla-
tion (MT) and cross lingual information retrieval.
While transliteration itself is a relatively well-

studied problem, its effect on the aforementioned
applications is still under investigation.

Transliteration as a self-contained task has its
own challenges, but applying it to a real applica-
tion introduces new challenges. In this paper we
analyze the efficacy of integrating a transliteration
module into a real MT system and evaluate the
performance.

When working on a limited domain, given a suf-
ficiently large amount of training data, almost all
of the words in the unseen data (in the same do-
main) will have appeared in the training corpus.
But this argument does not hold for NEs, because
no matter how big the training corpus is, there will
always be unseen names of people and locations.
Current MT systems either leave such unknown
names as they are in the final target text or remove
them in order to obtain a better evaluation score.
None of these methods can give the reader who is
not familiar with the source language any informa-
tion about those out-of-vocabulary (OOV) words,
especially when the source and target languages
use different scripts. If these words are not names,
one can usually guess what they are, by using the
partial information of other parts of speech. But, in
the case of names, there is no way to determine the
individual or location the sentence is talking about.
So, to improve the usability of a translation, it is
particularly important to handle NEs well.

The importance of NEs is not yet reflected in the
evaluation methods used in the MT community,
the most common of which is the BLEU metric.
BLEU (Papineni et al, 2002) was devised to pro-
vide automatic evaluation of MT output. In this
metric n-gram similarity of the MT output is com-
puted with one or more references made by human

17

translators. BLEU does not distinguish between
different words and gives equal weight to all. In
this paper, we base our evaluation on the BLEU
metric and show that using transliteration has im-
pact on it (and in some cases significant impact).
However, we believe that such integration is more
important for practical uses of MT than BLEU in-
dicates.

Other than improving readability and raising the
BLEU score, another advantage of using a translit-
eration system is that having the right translation
for a name helps the language model select a better
ordering for other words. For example, our phrase
table1 does not have any entry for “دالس” (Dulles)
and when running MT system on the plain Arabic
text we get

and this trip was cancelled […] by the american
authorities responsible for security at the airport
دالس .

We ran our MT system twice, once by suggest-
ing “dallas” and another time “dulles” as English
equivalents for “دالس” and the decoder generated
the following sentences, respectively:

and this trip was cancelled […] by the american
authorities responsible for security at the airport
at dallas .

and this trip was cancelled […] by the american
authorities responsible for security at dulles air-
port .2

Every statistical MT (SMT) system assigns a
probability distribution to the words that are seen
in its parallel training data, including proper names.
The richer the training data, the higher the chance
for a given name in the test data to be found in the
translation tables. In other words, an MT system
with a relatively rich phrase table is able to trans-
late many of the common names in the test data,
with all the remaining words being rare and foreign.
So unlike a self-contained transliteration module,
which typically deals with a mix of ‘easy’ and

1 A table where the conditional probabilities of target
phrases given source phrases (and vice versa) is kept.
2 Note that the language model can be trained on more
text, and hence can know more NEs than the translation
model does.

‘hard’ names, the primary use for a transliteration
module embedded in an SMT system will be to
deal with the ‘hard’ names left over after the
phrase tables have provided translations for the
‘easy’ ones. That means that when measuring the
performance improvements caused by embedding
a transliteration module in an MT system, one
must keep in mind that such improvements are dif-
ficult to attain: they are won mainly by correctly
transliterating ‘hard’ names.

Another issue with OOV words is that some of
them remained untranslated due to misspellings in
the source text. For example, we encountered
 ”ھیثرو“ instead of (”Hthearow“) ”ھثیرو“
(“Heathrow”) or “بریزر” (“Brezer”) instead of
 .in our development test set (”Bremer“) ”بریمر“

Also, evaluation by BLEU (or a similar auto-
matic metric) is problematic. Almost all of the MT
evaluations use one or more reference translations
as the gold standard and, using some metrics, they
give a score to the MT output. The problem with
NEs is that they usually have more than a single
equivalent in the target language (especially if they
don't originally come from the target language)
which may or may not have been captured in the
gold standard. So even if the transliteration module
comes up with a correct interpretation of a name it
might not receive credit as far as the limited num-
ber of correct names in the references are con-
cerned.

Our first impression was that having more inter-
pretations for a name in the references would raise
the transliteration module’s chance to generate at
least one of them, hence improving the perform-
ance. But, in practice, when references do not
agree on a name’s transliteration that is the sign of
an ambiguity. In these cases, the transliteration
module often suggests a correct transliteration that
the decoder outputs correctly, but which fails to
receive credit from the BLEU metric because this
transliteration is not found in the references. As an
example, for the name “سویریوس”, four references
came up with four different interpretations:
swerios, swiriyus, severius, sweires. A quick query
in Google showed us another four acceptable in-
terpretations (severios, sewerios, sweirios, saw-
erios).

Machine transliteration has been an active re-
search field for quite a while (Al-Onaizan and
Knight, 2002; AbdulJaleel and Larkey, 2003; Kle-
mentiev and Roth, 2006; Sproat et al, 2006) but to

18

our knowledge there is little published work on
evaluating transliteration within a real MT system.

The closest work to ours is described in (Hassan
and Sorensen, 2005) where they have a list of
names in Arabic and feed this list as the input text
to their MT system. They evaluate their system in
three different cases: as a word-based NE transla-
tion, phrase-based NE translation and in presence
of a transliteration module. Then, they report the
BLEU score on the final output. Since their text is
comprised of only NEs, the BLEU increase is quite
high. Combining all three models, they get a 24.9
BLEU point increase over the naïve baseline. The
difference they report between their best method
without transliteration and the one including trans-
literation is 8.12 BLEU points for person names
(their best increase).

In section 2, we introduce different methods for
incorporating a transliteration module into an MT
system and justify our choice. In section 3, the
transliteration module is briefly introduced and we
explain how we prepared its output for use by the
MT system. In section 4, an evaluation of the inte-
gration is provided. Finally, section 5 concludes
the paper.

2 Our Approach

Before going into details of our approach, an
overview of Portage (Sadat et al, 2005), the
machine translation system that we used for our
experiments and some of its properties should be
provided.

Portage is a statistical phrase-based SMT system
similar to Pharaoh (Koehn et al, 2003). Given a
source sentence, it tries to find the target sentence
that maximizes the joint probability of a target sen-
tence and a phrase alignment according to a loglin-
ear model. Features in the loglinear model consist
of a phrase-based translation model with relative-
frequency and lexical probability estimates; a 4-
gram language model using Kneser-Ney smooth-
ing, trained with the SRILM toolkit; a single-
parameter distortion penalty on phrase reordering;
and a word-length penalty. Weights on the loglin-
ear features are set using Och's algorithm (Och,
2003) to maximize the system's BLEU score on a
development corpus. To generate phrase pairs from
a parallel corpus, we use the "diag-and" phrase
induction algorithm described in (Koehn et al,

2003), with symmetrized word alignments gener-
ated using IBM model 2 (Brown et al, 1993).

Portage allows the use of SGML-like markup
for arbitrary entities within the input text. The
markup can be used to specify translations
provided by external sources for the entities, such
as rule-based translations of numbers and dates, or
a transliteration module for OOVs in our work.
Many SMT systems have this capability, so
although the details given here pertain to Portage,
the techniques described can be used in many
different SMT systems.

As an example, suppose we already have two
different transliterations with their probabilities for
the Arabic name “محمد”. We can replace every
occurrence of the “محمد” in the Arabic input text
with the following:

<NAME target="mohammed|mohamed"
prob=".7|.3"> محمد </NAME>

By running Portage on this marked up text, the
decoder chooses between entries in its own phrase
table and the marked-up text. One thing that is
important for our task is that if the entry cannot be
found in Portage’s phrase tables, it is guaranteed
that one of the candidates inside the markup will
be chosen. Even if none of the candidates exist in
the language model, the decoder still picks one of
them, because the system assigns a small arbitrary
probability (we typically use e-18) as unigram
probability of each unseen word.

We considered four different methods for
incorporating the transliteration module into the
MT system. The first and second methods need an
NE tagger and the other two do not require any
external tools.

Method 1: use an NE tagger to extract the
names in the Arabic input text. Then, run the
transliteration module on them and assign
probabilities to top candidates. Use the markup
capability of Portage and replace each name in the
Arabic text with the SGML-like tag including
different probabilities for different candidates.
Feed the marked-up text to Portage to translate.

Method 2: similar to method 1 but instead of
using the marked-up text, a new phrase table, only
containing entries for the names in the Arabic input
text is built and added to Portage’s existing phrase
tables. A weight is given to this phrase table and

19

then the decoder uses this phrase table as well as
its own phrase tables to decide which translation to
choose when encountering the names in the
text. The main difference between methods 1 and
2 is that in our system, method 2 allows for a bleu-
optimal weight to be learned for the NE phrase
table, whereas the weight on the rules for method 1
has to be set by hand.

Method 3: run Portage on the plain Arabic text.
Extract all untranslated Arabic OOVs and run the
transliteration module on them. Replace them with
the top candidate.

Method 4: run Portage on the plain Arabic text.
Extract all untranslated Arabic OOVs and run the
transliteration module on them. Replace them with
SGML-like tags including different probabilities
for different candidates, as described previously.
Feed the marked-up text to Portage to translate.

The first two methods need a powerful NE
tagger with a high recall value. We computed the
recall value on the development set OOVs using
two different NE taggers, Tagger A and Tagger B
(each from a different research group). Taggers A
and B showed a recall of 33% and 53% respec-
tively, both being low for our purposes. Another
issue with these two methods is that for many of
the names the transliteration module will compete
with the internal phrase table. Our observations
show that if a name exists in the phrase table, it is
likely to be translated correctly. In general,
observed parallel data (i.e. training data) should be
a more reliable source of information than
transliteration, encouraging us to use transliteration
most appropriately as a ‘back-off’ method. In a
few cases, the Arabic name is ambiguous with a
common word and is mistakenly translated as such.
For example, “ھانی ابو نحل” is an Arabic name that
should be transliterated as “Hani Abu Nahl” but
since “نحل” also means “solve”, the MT system
outputs “Hani Abu Solve”. The advantage of the
first two methods is that they can deal with such
cases. But considering the noise in the NE
detectors, handling them increases the risk of
losing already correct translations of other names.

The third method is simple and easy to use but
not optimal: it does not take advantage of the
decoder’s internal features (notably the language
models) and only picks up the highest scoring
candidate from the transliteration module.

The fourth method only deals with those words
that the MT system was unable to deal with and
had to leave untranslated in the final text.
Therefore whatever suggestions the transliteration
module makes do not need to compete with the
internal phrase tables, which is good because we
expect the phrase tables to be a more reliable
source of information. It is guaranteed that the
translation quality will be improved (in the worst
case, a bad transliteration is still more informative
than the original word in Arabic script). Moreover,
unlike the third method, we take advantage of all
internal decoder features on the second pass. We
adopt the fourth method for our experiment. The
following example better illustrates how this
approach works:

Example: Suppose we have the following sentence
in the Arabic input text:

.بلیر یقبل تقریر ھوتون بالکامل

Portage is run on the Arabic plain text and yields
the following output:

blair accepts ھوتون report in full .

The Arabic word “ھوتون” (Hutton) is extracted and
fed to the transliteration module. The
transliteration module comes up with some English
candidates, each with different probabilities as
estimated by the HMM. They are rescaled (as will
be explained in section 3) and the following
markup text will be generated to replace the
untranslated “ھوتون” in the first plain Arabic
sentence:

<NAME target="hoton|hutton|authon"
prob="0.1|0.00028|4.64e-05">ھوتون</NAME>

Portage is then run on this newly marked up text
(second pass). From now on, with the additional
guidance of the language models, it is the
decoder’s task to decide between different markup
suggestions. For the above example, the following
output will be generated:

blair accepts hutton report in full .

20

3 Transliteration System

In this section we provide a brief overview of the
embedded transliteration system we used for our
experiment. For the full description refer to
(Kashani et al, 2007).

3.1 Three Phase Transliteration

The transliteration module follows the noisy
channel framework. The adapted spelling-based
generative model is similar to (Al-Onaizan and
Knight, 2002). It consists of three consecutive
phases, the first two using HMMs and the Viterbi
algorithm, and the third using a number of
monolingual dictionaries to match the close entries
or to filter out some invalid candidates from the
first two phases.

Since in Arabic, the diacritics are usually
omitted in writing, a name like “محمد” (Mohamed)
would have an equivalent like “mhmd” if we only
take into account the written letters. To address
this issue, we run Viterbi in two different passes
(each called a phase), using HMMs trained on data
prepared in different ways.

In phase 1, the system tries to find the best
transliterations of the written word, without caring
about what the hidden diacritics would be (in our
example, mhmd).

In phase 2, given the Arabic input and the output
candidates from phase 1, the system fills in the
possible blanks in between using the character-
based language model (yielding “mohamed” as a
possible output, among others).

To prepare the character-level translation model
for both phases we adopted an approach similar to
(AbdulJaleel and Larkey, 2003).

In phase 3, the Google unigram model
(LDC2006T13 from the LDC catalog) is first used
to filter out the noise (i.e. those candidates that do
not exist in the Google unigram are removed from
the candidate list). Then a combination of some
monolingual dictionaries of person names is used
to find close matches between their entries and the
HMM output candidates based on the Levenshtein
distance metric.

3.2 Task-specific Changes to the Module

Due to the nature of the task at hand and by
observing the development test set and its

references, the following major changes became
necessary:

Removing Part of Phase Three: By observing the
OOV words in the development test set, we
realized that having the monolingual dictionary in
the pipeline and using the Levensthtein distance as
a metric for adding the closest dictionary entries to
the final output, does not help much, mainly
because OOVs are rarely in the dictionary. So, the
dictionary part not only slows down the execution
but would also add noise to the final output (by
adding some entries that probably are not the
desired outputs). However, we kept the Google
unigram filtering in the pipeline.

Rescaling HMM Probabilities: Although the
transliteration module outputs HMM probability
score for each candidate, and the MT system also
uses probability scores, in practice the translitera-
tion scores have to be adjusted. For example, if
three consecutive candidates have log probabilities
-40, -42 and -50, the decoder should be given val-
ues with similar differences in scale, comparable
with the typical differences in its internal features
(eg. Language Models). Knowing that the entries
in the internal features usually have exponential
differences, we adopted the following conversion
formula:

p'i = 0.1*(pi/pmax)

Equation 1

where pi = 10(output of HMM for candidate i) and max is the
best candidate.

We rescale the HMM probability so that the top
candidate is (arbitrarily) given a probability of p'max

= 0.1. It immediately follows that the rescaled
score would be 0.1 * pi / pmax. Since the decoder
combines its models in a log-linear fashion, we
apply an exponent to the HMM probabilities be-
fore scaling them, as way to control the weight of
those probabilities in decoding. This yields equa-
tion 1. Ideally, we would like the weight to be
optimized the same way other decoder weights are
optimized, but our decoder does not support this
yet, so for this work we arbitrarily set the weight to
 = 0.2, which seems to work well. For the above
example, the distribution would be 0.1, 0.039 and 0.001.

21

Prefix Detachment: Arabic is a morphologically
rich language. Even after performing tokenization,
some words still remain untokenized. If the
composite word is frequent, there is a chance that it
exists in the phrase table but many times it does
not, especially if the main part of that word is a
named entity. We did not want to delve into the
details of morphology: we only considered two
frequent prefixes: “و” (“va” meaning “and”) and
 If a word starts .(al” determiner in Arabic“) ”ال“
with either of these two prefixes, we detach them
and run the transliteration module once on the
detached name and a second time on the whole
word. The output candidates are merged
automatically based on their scores, and the
decoder decides which one to choose.

Keeping the Top 5 HMM Candidates: The
transliteration module uses the Google unigram
model to filter out the candidate words that do not
appear above a certain threshold (200 times) on the
Internet. This helps eliminate hundreds of
unwanted sequences of letters. But, we decided to
keep top-5 candidates on the output list, even if
they are rejected by the Google unigram model
because sometimes the transliteration module is
unable to suggest the correct equivalent or in other
cases the OOV should actually be translated rather
than transliterated 3 . In these cases, the closest
literal transliteration will still provide the end user
more information about the entity than the word in
Arabic script would.

4 Evaluation

Although there are metrics that directly address NE
translation performance4, we chose to use BLEU
because our purpose is to assess NE translation
within MT, and BLEU is currently the standard
metric for MT.

3 This would happen especially for ancient names or
some names that underwent sophisticated morphologi-
cal transformations (For example, Abraham in English
and ابراھیم (Ibrahim) in Arabic).
4 NIST’s NE translation task
(http://www.nist.gov/speech/tests/ace/index.htm) is an
example.

4.1 Training Data

We used the data made available for the 2006
NIST Machine Translation Evaluation. Our bilin-
gual training corpus consisted of 4M sentence pairs
drawn mostly from newswire and UN domains.
We trained one language model on the English half
of this corpus (137M running words), and another
on the English Gigaword corpus (2.3G running
words). For tuning feature weights, we used LDC's
"multiple translation part 1" corpus, which contains
1,043 sentence pairs.

4.2 Test Data

We used the NIST MT04 evaluation set and the
NIST MT05 evaluation set as our development and
blind test sets. The development test set consists of
1353 sentences, 233 of which contain OOVs.
Among them 100 sentences have OOVs that are
actually named entities. The blind test set consists
of 1056 sentences, 189 of them having OOVs and
131 of them having OOV named entities. The
number of sentences for each experiment is
summarized in table 1.

Whole Text OOV
Sentences

OOV-NE
Sentences

Dev test set 1353 233 100
Blind test set 1056 189 131

Table 1: Distribution of sentences in test sets.

4.3 Results

As the baseline, we ran the Portage without the
transliteration module on development and blind
test sets. The second column of table 2 shows
baseline BLEU scores. We applied method 4 as
outlined in section 2 and computed the BLEU
score, also in order to compare the results we
implemented method 3 on the same test sets. The
BLEU scores obtained from methods 3 and 4 are
shown in columns 3 and 4 of table 2.

baseline Method 3 Method 4 Oracle
Dev 44.67 44.71 44.83 44.90
Blind 48.56 48.62 48.80 49.01

Table 2: BLEU score on different test sets.

Considering the fact that only a small portion of
the test set has out-of-vocabulary named entities,

22

we computed the BLEU score on two different
sub-portions of the test set: first, on the sentences
with OOVs; second, only on the sentences
containing OOV named entities. The BLEU
increase on different portions of the test set is
shown in table 3.

baseline Method 4
Dev OOV sentences 39.17 40.02

OOV-NE Sentences 44.56 46.31
blind OOV sentences 43.93 45.07

OOV-NE Sentences 42.32 44.87

Table 3: BLEU score on different
portions of the test sets.

To set an upper bound on how much applying
any transliteration module can contribute to the
overall results, we developed an oracle-like
dictionary for the OOVs in the test sets, which was
then used to create a markup Arabic text. By
feeding this markup input to the MT system we
obtained the result shown in column 5 of table 2.
This is the performance our system would achieve
if it had perfect accuracy in transliteration,
including correctly guessing what errors the human
translators made in the references. Method 4
achieves 70% of this maximum gain on dev, and
53% on blind.

5 Conclusion

This paper has described the integration of a trans-
literation module into a state-of-the-art statistical
machine translation (SMT) system for the Arabic
to English task. The final version of the translitera-
tion module operates in three phases. First, it gen-
erates English letter sequences corresponding to
the Arabic letter sequence; for the typical case
where the Arabic omits diacritics, this often means
that the English letter sequence is incomplete (e.g.,
vowels are often missing). In the next phase, the
module tries to guess the missing English letters.
In the third phase, the module uses a huge collec-
tion of English unigrams to filter out improbable or
impossible English words and names. We de-
scribed four possible methods for integrating this
module in an SMT system. Two of these methods
require NE taggers of higher quality than those
available to us, and were not explored experimen-
tally. Method 3 inserts the top-scoring candidate
from the transliteration module in the translation

wherever there was an Arabic OOV in the source.
Method 4 outputs multiple candidates from the
transliteration module, each with a score; the SMT
system combines these scores with language model
scores to decide which candidate will be chosen. In
our experiments, Method 4 consistently outper-
formed Model 3. Note that although we used
BLEU as the metric for all experiments in this pa-
per, BLEU greatly understates the importance of
accurate transliteration for many practical SMT
applications.

References

Nasreen AbdulJaleel and Leah S. Larkey, 2003. Statisti-
cal Transliteration for English-Arabic Cross Lan-
guage Information Retrieval, Proceedings of the
Twelfth International Conference on Information and
Knowledge Management, New Orleans, LA

Yaser Al-Onaizan and Kevin Knight, 2002. Machine
Transliteration of Names in Arabic Text, Proceedings
of the ACL Workshop on Computational Approaches
to Semitic Languages

Peter F. Brown, Vincent J. Della Pietra, Stephen A.
Della Pietra, and Robert L. Mercer, 1993. The
Mathematics of Statistical Machine Translation: Pa-
rameter Estimation, Computational Linguistics

Hany Hassan and Jeffrey Sorensen, 2005. An Integrated
Approach for Arabic-English Named Entity Transla-
tion, Proceedings of the ACL Workshop on Compu-
tational Approaches to Semitic Languages (ACL),
University of Michigan, Ann Arbor

Mehdi M. Kashani, Fred Popowich, and Anoop Sarkar,
2007. Automatic Transliteration of Proper Nouns
from Arabic to English, Proceedings of the Second
Workshop on Computational Approaches to Arabic
Script-based Languages

Alexandre Klementiev and Dan Roth, 2006. Named
Entity Transliteration and Discovery from Multilin-
gual Comparable Corpora, COLING-ACL, Sidney,
Australia

Philipp Koehn, Franz Josef Och, and Daniel Marcu,
2003. Statistical Phrase-based Translation, In Pro-
ceedings of HLT-NAACL, Edmonton, Canada

Franz Josef Och, 2003. Minimum Error Rate Training
for Statistical Machine Translation, In Proceedings
of the 41th Annual Meeting of the Association for
Computation Linguistics, Sapporo

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu, 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings

23

of the 40th Annual Conference of the Association for
Computational Linguistics (ACL), Philadelphia, PA

Fatiha Sadat, Howard Johnson, Akakpo Agbago,
George Foster, Roland Kuhn, Aaron Tikuisis, 2005.
Portage: A Phrase-base Machine Translation System.
In Proceedings of the ACL Workshop on Building
and Using Parallel Texts, Ann Arbor, Michigan

Richard Sproat, Tao Tao, and ChengXiang Zhai, 2006,
Named Entity Transliteration with Comparable Cor-
pora, COLING-ACL, Sidney, Australia

24

