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Abstract

We provide an in-depth analysis of the in-
tegration of an Arabic-to-English translit-
eration system into a general-purpose 
phrase-based statistical machine translation 
system. We study the integration from dif-
ferent aspects and evaluate the improve-
ment that can be attributed to the integra-
tion using the BLEU metric. Our experi-
ments show that a transliteration module 
can help significantly in the situation where 
the test data is rich with previously unseen 
named entities. We obtain 70% and 53% of 
the theoretical maximum improvement we 
could achieve, as measured by an oracle on 
development and test sets respectively for 
OOV words (out of vocabulary source 
words not appearing in the phrase table).

1 Introduction

Transliteration is the practice of transcribing a 
word or text written in one writing system into an-
other writing system. The most frequent candidates 
for transliteration are person names, locations, or-
ganizations and imported words. The lack of a 
fully comprehensive bilingual dictionary including 
the entries for all named entities (NEs) renders the 
task of transliteration necessary for certain natural 
language processing applications dealing with 
named entities. Two applications where translitera-
tion can be particularly useful are machine transla-
tion (MT) and cross lingual information retrieval. 
While transliteration itself is a relatively well-

studied problem, its effect on the aforementioned 
applications is still under investigation.

Transliteration as a self-contained task has its 
own challenges, but applying it to a real applica-
tion introduces new challenges. In this paper we 
analyze the efficacy of integrating a transliteration 
module into a real MT system and evaluate the 
performance.

When working on a limited domain, given a suf-
ficiently large amount of training data, almost all 
of the words in the unseen data (in the same do-
main) will have appeared in the training corpus. 
But this argument does not hold for NEs, because 
no matter how big the training corpus is, there will 
always be unseen names of people and locations. 
Current MT systems either leave such unknown 
names as they are in the final target text or remove 
them in order to obtain a better evaluation score. 
None of these methods can give the reader who is 
not familiar with the source language any informa-
tion about those out-of-vocabulary (OOV) words, 
especially when the source and target languages 
use different scripts. If these words are not names, 
one can usually guess what they are, by using the 
partial information of other parts of speech. But, in 
the case of names, there is no way to determine the 
individual or location the sentence is talking about. 
So, to improve the usability of a translation, it is 
particularly important to handle NEs well.

The importance of NEs is not yet reflected in the 
evaluation methods used in the MT community, 
the most common of which is the BLEU metric. 
BLEU (Papineni et al, 2002) was devised to pro-
vide automatic evaluation of MT output. In this 
metric n-gram similarity of the MT output is com-
puted with one or more references made by human 
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translators. BLEU does not distinguish between 
different words and gives equal weight to all. In 
this paper, we base our evaluation on the BLEU 
metric and show that using transliteration has im-
pact on it (and in some cases significant impact). 
However, we believe that such integration is more 
important for practical uses of MT than BLEU in-
dicates.

Other than improving readability and raising the 
BLEU score, another advantage of using a translit-
eration system is that having the right translation 
for a name helps the language model select a better 
ordering for other words. For example, our phrase 
table1 does not have any entry for “دالس” (Dulles) 
and when running MT system on the plain Arabic 
text we get

and this trip was cancelled […] by the american 
authorities responsible for security at the airport 
دالس .

We ran our MT system twice, once by suggest-
ing “dallas” and another time “dulles” as English 
equivalents for “دالس” and the decoder generated 
the following sentences, respectively:

and this trip was cancelled […] by the american 
authorities responsible for security at the airport 
at dallas .

and this trip was cancelled […] by the american 
authorities responsible for security at dulles air-
port .2

Every statistical MT (SMT) system assigns a 
probability distribution to the words that are seen 
in its parallel training data, including proper names. 
The richer the training data, the higher the chance 
for a given name in the test data to be found in the 
translation tables. In other words, an MT system 
with a relatively rich phrase table is able to trans-
late many of the common names in the test data, 
with all the remaining words being rare and foreign. 
So unlike a self-contained transliteration module, 
which typically deals with a mix of ‘easy’ and 

                                                
1 A table where the conditional probabilities of target 
phrases given source phrases (and vice versa) is kept.
2 Note that the language model can be trained on more 
text, and hence can know more NEs than the translation 
model does.

‘hard’ names, the primary use for a transliteration 
module embedded in an SMT system will be to 
deal with the ‘hard’ names left over after the 
phrase tables have provided translations for the 
‘easy’ ones. That means that when measuring the 
performance improvements caused by embedding 
a transliteration module in an MT system, one 
must keep in mind that such improvements are dif-
ficult to attain: they are won mainly by correctly 
transliterating ‘hard’ names. 

Another issue with OOV words is that some of 
them remained untranslated due to misspellings in 
the source text. For example, we encountered 
 ”ھیثرو“ instead of (”Hthearow“) ”ھثیرو“
(“Heathrow”) or “بریزر” (“Brezer”) instead of 
 .in our development test set (”Bremer“) ”بریمر“

Also, evaluation by BLEU (or a similar auto-
matic metric) is problematic. Almost all of the MT 
evaluations use one or more reference translations 
as the gold standard and, using some metrics, they 
give a score to the MT output. The problem with 
NEs is that they usually have more than a single 
equivalent in the target language (especially if they 
don't originally come from the target language) 
which may or may not have been captured in the 
gold standard. So even if the transliteration module 
comes up with a correct interpretation of a name it 
might not receive credit as far as the limited num-
ber of correct names in the references are con-
cerned.

Our first impression was that having more inter-
pretations for a name in the references would raise 
the transliteration module’s chance to generate at 
least one of them, hence improving the perform-
ance. But, in practice, when references do not 
agree on a name’s transliteration that is the sign of 
an ambiguity. In these cases, the transliteration 
module often suggests a correct transliteration that 
the decoder outputs correctly, but which fails to 
receive credit from the BLEU metric because this 
transliteration is not found in the references. As an 
example, for the name “سویریوس”, four references 
came up with four different interpretations: 
swerios, swiriyus, severius, sweires. A quick query 
in Google showed us another four acceptable in-
terpretations (severios, sewerios, sweirios, saw-
erios).

Machine transliteration has been an active re-
search field for quite a while (Al-Onaizan and 
Knight, 2002; AbdulJaleel and Larkey, 2003; Kle-
mentiev and Roth, 2006; Sproat et al, 2006) but to 

18



our knowledge there is little published work on 
evaluating transliteration within a real MT system.

The closest work to ours is described in (Hassan 
and Sorensen, 2005) where they have a list of 
names in Arabic and feed this list as the input text 
to their MT system. They evaluate their system in 
three different cases: as a word-based NE transla-
tion, phrase-based NE translation and in presence 
of a transliteration module. Then, they report the 
BLEU score on the final output. Since their text is 
comprised of only NEs, the BLEU increase is quite 
high. Combining all three models, they get a 24.9 
BLEU point increase over the naïve baseline. The 
difference they report between their best method 
without transliteration and the one including trans-
literation is 8.12 BLEU points for person names 
(their best increase).

In section 2, we introduce different methods for 
incorporating a transliteration module into an MT 
system and justify our choice. In section 3, the 
transliteration module is briefly introduced and we 
explain how we prepared its output for use by the 
MT system. In section 4, an evaluation of the inte-
gration is provided. Finally, section 5 concludes 
the paper.

2 Our Approach

Before going into details of our approach, an 
overview of Portage (Sadat et al, 2005), the 
machine translation system that we used for our 
experiments and some of its properties should be 
provided.

Portage is a statistical phrase-based SMT system 
similar to Pharaoh (Koehn et al, 2003).  Given a 
source sentence, it tries to find the target sentence 
that maximizes the joint probability of a target sen-
tence and a phrase alignment according to a loglin-
ear model. Features in the loglinear model consist 
of a phrase-based translation model with relative-
frequency and lexical probability estimates; a 4-
gram language model using Kneser-Ney smooth-
ing, trained with the SRILM toolkit; a single-
parameter distortion penalty on phrase reordering; 
and a word-length penalty. Weights on the loglin-
ear features are set using Och's algorithm (Och, 
2003) to maximize the system's BLEU score on a 
development corpus. To generate phrase pairs from 
a parallel corpus, we use the "diag-and" phrase 
induction algorithm described in (Koehn et al, 

2003), with symmetrized word alignments gener-
ated using IBM model 2 (Brown et al, 1993).

Portage allows the use of SGML-like markup 
for arbitrary entities within the input text. The 
markup can be used to specify translations 
provided by external sources for the entities, such 
as rule-based translations of numbers and dates, or 
a transliteration module for OOVs in our work. 
Many SMT systems have this capability, so 
although the details given here pertain to Portage, 
the techniques described can be used in many 
different SMT systems.

As an example, suppose we already have two 
different transliterations with their probabilities for 
the Arabic name “محمد”. We can replace every 
occurrence of the “محمد” in the Arabic input text 
with the following:

<NAME target="mohammed|mohamed"
prob=".7|.3"> محمد </NAME>

By running Portage on this marked up text, the 
decoder chooses between entries in its own phrase 
table and the marked-up text. One thing that is 
important for our task is that if the entry cannot be 
found in Portage’s phrase tables, it is guaranteed 
that one of the candidates inside the markup will 
be chosen. Even if none of the candidates exist in 
the language model, the decoder still picks one of 
them, because the system assigns a small arbitrary 
probability (we typically use e-18) as unigram 
probability of each unseen word.

We considered four different methods for 
incorporating the transliteration module into the 
MT system. The first and second methods need an 
NE tagger and the other two do not require any 
external tools.

Method 1: use an NE tagger to extract the 
names in the Arabic input text. Then, run the 
transliteration module on them and assign 
probabilities to top candidates. Use the markup 
capability of Portage and replace each name in the 
Arabic text with the SGML-like tag including 
different probabilities for different candidates. 
Feed the marked-up text to Portage to translate.

Method 2: similar to method 1 but instead of 
using the marked-up text, a new phrase table, only 
containing entries for the names in the Arabic input 
text is built and added to Portage’s existing phrase 
tables. A weight is given to this phrase table and 
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then the decoder uses this phrase table as well as 
its own phrase tables to decide which translation to 
choose when encountering the names in the 
text.  The main difference between methods 1 and 
2 is that in our system, method 2 allows for a bleu-
optimal weight to be learned for the NE phrase 
table, whereas the weight on the rules for method 1 
has to be set by hand.

Method 3: run Portage on the plain Arabic text. 
Extract all untranslated Arabic OOVs and run the 
transliteration module on them. Replace them with 
the top candidate.

Method 4: run Portage on the plain Arabic text. 
Extract all untranslated Arabic OOVs and run the 
transliteration module on them. Replace them with 
SGML-like tags including different probabilities 
for different candidates, as described previously. 
Feed the marked-up text to Portage to translate.

The first two methods need a powerful NE 
tagger with a high recall value. We computed the 
recall value on the development set OOVs using 
two different NE taggers, Tagger A and Tagger B 
(each from a different research group). Taggers A 
and B showed a recall of 33% and 53% respec-
tively, both being low for our purposes. Another 
issue with these two methods is that for many of 
the names the transliteration module will compete 
with the internal phrase table. Our observations 
show that if a name exists in the phrase table, it is 
likely to be translated correctly. In general, 
observed parallel data (i.e. training data) should be 
a more reliable source of information than 
transliteration, encouraging us to use transliteration 
most appropriately as a ‘back-off’ method. In a 
few cases, the Arabic name is ambiguous with a 
common word and is mistakenly translated as such. 
For example, “ھانی ابو نحل” is an Arabic name that 
should be transliterated as “Hani Abu Nahl” but 
since “نحل” also means “solve”, the MT system 
outputs “Hani Abu Solve”. The advantage of the 
first two methods is that they can deal with such 
cases. But considering the noise in the NE 
detectors, handling them increases the risk of 
losing already correct translations of other names.

The third method is simple and easy to use but 
not optimal: it does not take advantage of the 
decoder’s internal features (notably the language 
models) and only picks up the highest scoring 
candidate from the transliteration module.

The fourth method only deals with those words 
that the MT system was unable to deal with and 
had to leave untranslated in the final text. 
Therefore whatever suggestions the transliteration 
module makes do not need to compete with the 
internal phrase tables, which is good because we 
expect the phrase tables to be a more reliable 
source of information. It is guaranteed that the 
translation quality will be improved (in the worst 
case, a bad transliteration is still more informative 
than the original word in Arabic script). Moreover, 
unlike the third method, we take advantage of all 
internal decoder features on the second pass. We 
adopt the fourth method for our experiment. The 
following example better illustrates how this 
approach works:

Example: Suppose we have the following sentence 
in the Arabic input text: 

.بلیر یقبل تقریر ھوتون بالکامل

Portage is run on the Arabic plain text and yields 
the following output:

blair accepts ھوتون report in full .

The Arabic word “ھوتون” (Hutton) is extracted and 
fed to the transliteration module. The 
transliteration module comes up with some English 
candidates, each with different probabilities as 
estimated by the HMM. They are rescaled (as will 
be explained in section 3) and the following 
markup text will be generated to replace the 
untranslated “ھوتون” in the first plain Arabic 
sentence:

<NAME target="hoton|hutton|authon" 
prob="0.1|0.00028|4.64e-05">ھوتون</NAME> 

Portage is then run on this newly marked up text 
(second pass). From now on, with the additional 
guidance of the language models, it is the 
decoder’s task to decide between different markup 
suggestions. For the above example, the following 
output will be generated:

blair accepts hutton report in full .
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3 Transliteration System

In this section we provide a brief overview of the 
embedded transliteration system we used for our 
experiment. For the full description refer to 
(Kashani et al, 2007).

3.1 Three Phase Transliteration

The transliteration module follows the noisy 
channel framework. The adapted spelling-based 
generative model is similar to (Al-Onaizan and 
Knight, 2002). It consists of three consecutive 
phases, the first two using HMMs and the Viterbi 
algorithm, and the third using a number of 
monolingual dictionaries to match the close entries 
or to filter out some invalid candidates from the 
first two phases.

Since in Arabic, the diacritics are usually 
omitted in writing, a name like “محمد” (Mohamed) 
would have an equivalent like “mhmd” if we only 
take into account the written letters. To address 
this issue, we run Viterbi in two different passes 
(each called a phase), using HMMs trained on data 
prepared in different ways.

In phase 1, the system tries to find the best 
transliterations of the written word, without caring 
about what the hidden diacritics would be (in our 
example, mhmd).

In phase 2, given the Arabic input and the output 
candidates from phase 1, the system fills in the 
possible blanks in between using the character-
based language model (yielding “mohamed” as a 
possible output, among others).

To prepare the character-level translation model 
for both phases we adopted an approach similar to 
(AbdulJaleel and Larkey, 2003).

In phase 3, the Google unigram model 
(LDC2006T13 from the LDC catalog) is first used 
to filter out the noise (i.e. those candidates that do 
not exist in the Google unigram are removed from 
the candidate list). Then a combination of some 
monolingual dictionaries of person names is used 
to find close matches between their entries and the 
HMM output candidates based on the Levenshtein 
distance metric.

3.2 Task-specific Changes to the Module

Due to the nature of the task at hand and by 
observing the development test set and its 

references, the following major changes became 
necessary:

Removing Part of Phase Three: By observing the 
OOV words in the development test set, we 
realized that having the monolingual dictionary in 
the pipeline and using the Levensthtein distance as 
a metric for adding the closest dictionary entries to 
the final output, does not help much, mainly 
because OOVs are rarely in the dictionary. So, the 
dictionary part not only slows down the execution 
but would also add noise to the final output (by 
adding some entries that probably are not the 
desired outputs). However, we kept the Google 
unigram filtering in the pipeline.

Rescaling HMM Probabilities: Although the 
transliteration module outputs HMM probability 
score for each candidate, and the MT system also 
uses probability scores, in practice the translitera-
tion scores have to be adjusted.  For example, if 
three consecutive candidates have log probabilities 
-40, -42 and -50, the decoder should be given val-
ues with similar differences in scale, comparable 
with the typical differences in its internal features 
(eg. Language Models). Knowing that the entries 
in the internal features usually have exponential 
differences, we adopted the following conversion 
formula:

p'i = 0.1*(pi/pmax)


Equation 1

where pi = 10(output of HMM for candidate i) and max is the 
best candidate.

We rescale the HMM probability so that the top 
candidate is (arbitrarily) given a probability of p'max

= 0.1.  It immediately follows that the rescaled 
score would be 0.1 * pi / pmax.  Since the decoder
combines its models in a log-linear fashion, we 
apply an exponent  to the HMM probabilities be-
fore scaling them, as way to control the weight of 
those probabilities in decoding.  This yields equa-
tion 1.  Ideally, we would like the weight  to be 
optimized the same way other decoder weights are 
optimized, but our decoder does not support this 
yet, so for this work we arbitrarily set the weight to 
 = 0.2, which seems to work well. For the above 
example, the distribution would be 0.1, 0.039 and 0.001.
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Prefix Detachment: Arabic is a morphologically 
rich language. Even after performing tokenization, 
some words still remain untokenized. If the 
composite word is frequent, there is a chance that it 
exists in the phrase table but many times it does 
not, especially if the main part of that word is a 
named entity. We did not want to delve into the 
details of morphology: we only considered two 
frequent prefixes: “و” (“va” meaning “and”) and 
 If a word starts .(al” determiner in Arabic“) ”ال“
with either of these two prefixes, we detach them 
and run the transliteration module once on the 
detached name and a second time on the whole 
word. The output candidates are merged 
automatically based on their scores, and the 
decoder decides which one to choose.

Keeping the Top 5 HMM Candidates: The 
transliteration module uses the Google unigram 
model to filter out the candidate words that do not 
appear above a certain threshold (200 times) on the 
Internet. This helps eliminate hundreds of 
unwanted sequences of letters. But, we decided to 
keep top-5 candidates on the output list, even if 
they are rejected by the Google unigram model 
because sometimes the transliteration module is
unable to suggest the correct equivalent or in other 
cases the OOV should actually be translated rather 
than transliterated 3 . In these cases, the closest 
literal transliteration will still provide the end user 
more information about the entity than the word in 
Arabic script would.

4 Evaluation

Although there are metrics that directly address NE 
translation performance4, we chose to use BLEU 
because our purpose is to assess NE translation 
within MT, and BLEU is currently the standard 
metric for MT.

                                                
3 This would happen especially for ancient names or 
some names that underwent sophisticated morphologi-
cal transformations (For example, Abraham in English 
and ابراھیم (Ibrahim) in Arabic).
4 NIST’s NE translation task 
(http://www.nist.gov/speech/tests/ace/index.htm) is an 
example.

4.1 Training Data

We used the data made available for the 2006 
NIST Machine Translation Evaluation. Our bilin-
gual training corpus consisted of 4M sentence pairs
drawn mostly from newswire and UN domains. 
We trained one language model on the English half 
of this corpus (137M running words), and another 
on the English Gigaword corpus (2.3G running 
words). For tuning feature weights, we used LDC's 
"multiple translation part 1" corpus, which contains 
1,043 sentence pairs. 

4.2 Test Data

We used the NIST MT04 evaluation set and the 
NIST MT05 evaluation set as our development and 
blind test sets. The development test set consists of 
1353 sentences, 233 of which contain OOVs. 
Among them 100 sentences have OOVs that are 
actually named entities. The blind test set consists 
of 1056 sentences, 189 of them having OOVs and 
131 of them having OOV named entities. The 
number of sentences for each experiment is 
summarized in table 1.

Whole Text OOV 
Sentences

OOV-NE 
Sentences

Dev test set 1353 233 100
Blind test set 1056 189 131

Table 1: Distribution of sentences in test sets.

4.3 Results

As the baseline, we ran the Portage without the 
transliteration module on development and blind 
test sets. The second column of table 2 shows 
baseline BLEU scores. We applied method 4 as 
outlined in section 2 and computed the BLEU 
score, also in order to compare the results we 
implemented method 3 on the same test sets. The 
BLEU scores obtained from methods 3 and 4 are 
shown in columns 3 and 4 of table 2.

baseline Method 3 Method 4 Oracle
Dev 44.67 44.71 44.83 44.90
Blind 48.56 48.62 48.80 49.01

Table 2: BLEU score on different test sets.

Considering the fact that only a small portion of 
the test set has out-of-vocabulary named entities, 
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we computed the BLEU score on two different 
sub-portions of the test set: first, on the sentences 
with OOVs; second, only on the sentences 
containing OOV named entities. The BLEU 
increase on different portions of the test set is 
shown in table 3.

baseline Method 4
Dev OOV sentences 39.17 40.02

OOV-NE Sentences 44.56 46.31
blind OOV sentences 43.93 45.07

OOV-NE Sentences 42.32 44.87

Table 3: BLEU score on different 
portions of the test sets.

To set an upper bound on how much applying 
any transliteration module can contribute to the 
overall results, we developed an oracle-like 
dictionary for the OOVs in the test sets, which was 
then used to create a markup Arabic text. By 
feeding this markup input to the MT system we 
obtained the result shown in column 5 of table 2. 
This is the performance our system would achieve 
if it had perfect accuracy in transliteration, 
including correctly guessing what errors the human 
translators made in the references.  Method 4 
achieves 70% of this maximum gain on dev, and 
53% on blind.

5 Conclusion

This paper has described the integration of a trans-
literation module into a state-of-the-art statistical 
machine translation (SMT) system for the Arabic 
to English task. The final version of the translitera-
tion module operates in three phases. First, it gen-
erates English letter sequences corresponding to 
the Arabic letter sequence; for the typical case 
where the Arabic omits diacritics, this often means 
that the English letter sequence is incomplete (e.g., 
vowels are often missing). In the next phase, the 
module tries to guess the missing English letters. 
In the third phase, the module uses a huge collec-
tion of English unigrams to filter out improbable or 
impossible English words and names. We de-
scribed four possible methods for integrating this
module in an SMT system. Two of these methods 
require NE taggers of higher quality than those 
available to us, and were not explored experimen-
tally. Method 3 inserts the top-scoring candidate 
from the transliteration module in the translation 

wherever there was an Arabic OOV in the source. 
Method 4 outputs multiple candidates from the
transliteration module, each with a score; the SMT 
system combines these scores with language model 
scores to decide which candidate will be chosen. In 
our experiments, Method 4 consistently outper-
formed Model 3. Note that although we used 
BLEU as the metric for all experiments in this pa-
per, BLEU greatly understates the importance of
accurate transliteration for many practical SMT 
applications.

References

Nasreen AbdulJaleel and Leah S. Larkey, 2003. Statisti-
cal Transliteration for English-Arabic Cross Lan-
guage Information Retrieval, Proceedings of the 
Twelfth International Conference on Information and 
Knowledge Management, New Orleans, LA

Yaser Al-Onaizan and Kevin Knight, 2002. Machine 
Transliteration of Names in Arabic Text, Proceedings 
of the ACL Workshop on Computational Approaches 
to Semitic Languages 

Peter F. Brown, Vincent J. Della Pietra, Stephen A. 
Della Pietra, and Robert L. Mercer, 1993. The 
Mathematics of Statistical Machine Translation: Pa-
rameter Estimation, Computational Linguistics

Hany Hassan and Jeffrey Sorensen, 2005. An Integrated 
Approach for Arabic-English Named Entity Transla-
tion, Proceedings of the ACL Workshop on Compu-
tational Approaches to Semitic Languages (ACL), 
University of Michigan, Ann Arbor

Mehdi M. Kashani, Fred Popowich, and Anoop Sarkar, 
2007. Automatic Transliteration of Proper Nouns 
from Arabic to English, Proceedings of the Second 
Workshop on Computational Approaches to Arabic 
Script-based Languages

Alexandre Klementiev and Dan Roth, 2006. Named 
Entity Transliteration and Discovery from Multilin-
gual Comparable Corpora, COLING-ACL, Sidney, 
Australia

Philipp Koehn, Franz Josef Och, and Daniel Marcu, 
2003. Statistical Phrase-based Translation, In Pro-
ceedings of HLT-NAACL, Edmonton, Canada

Franz Josef Och, 2003. Minimum Error Rate Training 
for Statistical Machine Translation, In Proceedings 
of the 41th Annual Meeting of the Association for 
Computation Linguistics, Sapporo

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu, 2002. BLEU: a Method for Automatic 
Evaluation of Machine Translation. In Proceedings 

23



of the 40th Annual Conference of the Association for 
Computational Linguistics (ACL), Philadelphia, PA

Fatiha Sadat, Howard Johnson, Akakpo Agbago, 
George Foster, Roland Kuhn, Aaron Tikuisis, 2005. 
Portage: A Phrase-base Machine Translation System.
In Proceedings of the ACL Workshop on Building 
and Using Parallel Texts, Ann Arbor, Michigan

Richard Sproat, Tao Tao, and ChengXiang Zhai, 2006, 
Named Entity Transliteration with Comparable Cor-
pora, COLING-ACL, Sidney, Australia

24


