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Abstract

This paper describes a set of experi-
ments on two sub-tasks of Quality Esti-
mation of Machine Translation (MT) out-
put. Sentence-level ranking of alternative
MT outputs is done with pairwise classi-
fiers using Logistic Regression with black-
box features originating from PCFG Pars-
ing, language models and various counts.
Post-editing time prediction uses regres-
sion models, additionally fed with new
elaborate features from the Statistical MT
decoding process. These seem to be better
indicators of post-editing time than black-
box features. Prior to training the models,
feature scoring with ReliefF and Informa-
tion Gain is used to choose feature sets of
decent size and avoid computational com-
plexity.

1 Introduction

During the recent years, Machine Translation
(MT) has reached levels of performance which al-
low for its integration into real-world translation
workflows. Despite the high speed and various ad-
vantages of this technology, the fact that the MT
results are rarely perfect and often require man-
ual corrections has raised a need to assess their
quality, predict the required post-editing effort and
compare outputs from various systems on applica-
tion time. This has been the aim of current re-
search on Quality Estimation, which investigates
solutions for several variations of such problems.

We describe possible solutions for two prob-
lems of MT Quality Estimation, as part of
the 8th Shared Task on Machine Translation:
(a) sentence-level quality ranking (1.2) of multi-
ple translations of the same source sentence and
(b) prediction of post-editing time (1.3). We
present our approach on acquiring (section 2.1)

and selecting features (section 2.2), we explain
the generation of the statistical estimation systems
(section 2.3) and we evaluate the developed solu-
tions with some of the standard metrics (section 3).

2 Methods: Quality Estimation as
machine learning

These two Quality Estimation solutions have been
seen as typical supervised machine learning prob-
lems. MT output has been given to humans, so that
they perform either (a) ranking of the multiple MT
system outputs in terms of meaning or (b) post-
editing of single MT system output, where time
needed per sentence is measured. The output of
these tasks has been provided by the shared task
organizers as a training material, whereas a small
keep-out set has been reserved for testing pur-
poses.

Our task is therefore to perform automatic qual-
ity analysis of the translation output and the trans-
lation process in order to provide features for the
supervised machine learning mechanism, which is
then trained over the corresponding to the respec-
tive human behaviour. The task is first optimized
in a development phase in order to produce the two
best shared task submissions for each task. These
are finally tested on the keep-out set so that their
performance is compared with the ones submitted
by all other shared-task participants.

2.1 Feature acquisition

We acquire two types of sentence-level features,
that are expected to provide hints about the quality
of the generated translation, depending on whether
they have access to internal details of the MT de-
coding process (glass-box) or they are only de-
rived from characteristics of the processed and
generated sentence text (black-box).
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2.1.1 Black-box features
Features of this type are generated as a result of
automatic analysis of both the source sentence and
the MT output (when applicable), whereas many
of them are already part of the baseline infrastruc-
ture. For all features we also calculate the ratios
of the source to the target sentence. These features
include:

PCFG Features: We parse the text with a PCFG
grammar (Petrov et al., 2006) and we derive the
counts of all node labels (e.g. count of VPs, NPs
etc.), the parse log-likelihood and the number of
the n-best parse trees generated (Avramidis et al.,
2011).

Rule-based language correction is a result of
hand-written controlled language rules, that indi-
cate mistakes on several pre-defined error cate-
gories (Naber, 2003). We include the number of
errors of each category as a feature.

Language model scores include the smoothed
n-gram probability and the n-gram perplexity of
the sentence.

Count-based features include count and per-
centage of tokens, unknown words, punctuation
marks, numbers, tokens which do or do not con-
tain characters “a-z”; the absolute difference be-
tween number of tokens in source and target nor-
malized by source length, number of occurrences
of the target word within the target hypothesis av-
eraged for all words in the hypothesis (type/token
ratio).

Source frequency: A set of eight features in-
cludes the percentage of uni-grams, bi-grams and
tri-grams of the processed sentence in frequency
quartiles 1 (lower frequency words) and 4 (higher
frequency words) in the source side of a parallel
corpus (Callison-Burch et al., 2012).

Contrastive evaluation scores: For the ranking
task, each translation is scored with an automatic
metric (Papineni et al., 2002; Lavie and Agarwal,
2007), using the other translations as references
(Soricut et al., 2012).

2.1.2 Glass-box features
Glass-box features are available only for the time-
prediction task, as a result of analyzing the verbose
output of the Minimum Bayes Risk decoding pro-
cess.

Counts from the best hypothesis: Count
of phrases, tokens, average/minimum/maximum
phrase length, position of longest and shortest
phrase in the source sentence; count of words
unknown to the phrase table, average number of
unknown words first/last position of an unknown
word in the sentence normalized to the number of
tokens, variance and deviation of the position of
the unknown words.

Log probability (pC) and future cost esti-
mate (c) of the phrases chosen as part of the best
translation: minimum and maximum values and
their position in the sentence averaged to the num-
ber of sentences, and also their average, variance,
standard deviation; count of the phrases whose
probability or future cost estimate is lower and
higher than their standard deviation; the ratio of
these phrases to the total number of phrases.

Alternative translations from the search path
of the decoder: average phrase length, average of
the average/variance/standard deviation of phrase
log probability and future cost estimate, count of
alternative phrases whose log probability or future
cost estimate is lower and higher than their stan-
dard deviation.

2.2 Feature selection

Feature acquisition results in a huge number of
features. Although the machine learning mech-
anisms already include feature selection or regu-
larization, huge feature sets may be unusable for
training, due to the high processing needs and the
sparsity or noise they may infer. For this purpose
we first reduce the number of features by scoring
them with two popular correlation measurement
methods.

2.2.1 Information gain
Information gain (Hunt et al., 1966) estimates the
difference between the prior entropy of the classes
and the posterior entropy given the attribute val-
ues. It is useful for estimating the quality of each
attribute but it works under the assumption that
features are independent, so it is not suitable when
strong feature inter-correlation exists. Information
gain is only used for the sentence ranking task af-
ter discretization of the feature values.

2.2.2 ReliefF
ReliefF assesses the ability of each feature to dis-
tinguish between very similar instances from dif-
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ferent classes (Kononenko, 1994). It picks up a
number of instances in random and calculates a
feature contribution based on the nearest hits and
misses. It is a robust method which can deal with
incomplete and noisy data (Robnik-Šikonja and
Kononenko, 2003).

2.3 Machine learning algorithms

Machine learning is performed for the two sub-
tasks using common pairwise classification and
regression methods, respectively.

2.3.1 Ranking with pairwise binary
classifiers

For the sub-task on sentence-ranking we used pair-
wise classification, so that we can take advantage
of several powerful binary classification methods
(Avramidis, 2012). We used logistic regression,
which optimizes a logistic function to predict val-
ues in the range between zero and one (Cameron,
1998), given a feature set X:

P (X) =
1

1 + e−1(a+bX)
(1)

The logistic function is fitted using the Newton-
Raphson algorithm to iteratively minimize the
least squares error computed from training data
(Miller, 2002). Experiments are repeated with two
variations of Logistic Regression concerning inter-
nal features treatment: Stepwise Feature Set Selec-
tion (Hosmer, 1989) and L2-Regularization (Lin
et al., 2007).

2.3.2 Regression
For the sub-task on post-editing time prediction,
we experimented with several regression meth-
ods, such as Linear Regression, Partial Least
Squares (Stone and Brooks, 1990), Multivariate
Adaptive Regression Splines (Friedman, 1991),
LASSO (Tibshirani, 1996), Support Vector Regres-
sion (Basak et al., 2007) and Tree-based regres-
sors. Indicatively, Linear regression optimizes co-
efficient β for predicting a value y, given a feature
vector X:

y = Xβ + ε (2)

2.4 Evaluation

The ranking task is evaluated by measuring cor-
relation between the predicted and the human
ranking, with the use of Kendall tau (Kendall,
1938) including penalization of ties. We addi-
tionally consider two more metrics specialized in

ranking tasks: Mean Reciprocal Rank - MRR
(Voorhees, 1999) and Normalized Discounted Cu-
mulative Gain - NDGC (Järvelin and Kekäläinen,
2002), which give better scores to models when
higher ranks (i.e. better translations) are ordered
correctly, as these are more important than lower
ranks.

The regression task is evaluated in terms of Root
Mean Square Error (RMSE) and Mean Average
Error (MAE).

3 Experiment and Results

3.1 Implementation
Relieff is implemented for k=5 nearest neighbours
sampling m=100 reference instances. Information
gain is calculated after discretizing features into
n=100 values

N-gram features are computed with the SRILM
toolkit (Stolcke, 2002) with an order of 5, based
on monolingual training material from Europarl
(Koehn, 2005) and News Commentary (Callison-
Burch et al., 2011). PCFG parsing features are
generated on the output of the Berkeley Parser
(Petrov and Klein, 2007) trained over an English,
a German and a Spanish treebank (Taulé et al.,
2008). The open source language tool1 is used
to annotate source and target sentences with lan-
guage suggestions. The annotation process is or-
ganised with the Ruffus library (Goodstadt, 2010)
and the learning algorithms are executed using the
Orange toolkit (Demšar et al., 2004).

3.2 Sentence-ranking
The sentence-ranking sub-task has provided train-
ing data for two language pairs, German-English
and English-Spanish. For both sentence pairs,
we train the systems using the provided an-
notated data sets WMT2010, WMT2011 and
WMT2012, while the data set WMT2009 is used
for the evaluation during the development phase.
Data sets are analyzed with black-box feature gen-
eration. For each language pair, the two systems
with the highest correlation are submitted.

We start the development with two feature sets
that have shown to perform well in previous ex-
periments: #24 (Avramidis, 2012) including fea-
tures from PCFG parsing, and #31 which is the
baseline feature set of the previous year’s shared
task (Callison-Burch et al., 2012) and we combine
them (#33). Additionally, we create feature sets by

1Open source at http://languagetool.org
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de-en en-es
id feature-set tau MRR NDGC tau MRR NDGC

#24 previous (Avramidis, 2012) 0.28 0.57 0.78 0.09 0.52 0.75
#31 baseline WMT2012 0.04 0.51 0.74 -0.16 0.43 0.69
#32 vanilla WMT2013 0.04 0.51 0.74 -0.13 0.45 0.70
#33 combine #24 and #31 0.29 0.57 0.78 0.10 0.53 0.75
#41 ReliefF 15 best 0.20 0.56 0.77 0.02 0.48 0.72
#411 ReliefF 5 best 0.22 0.53 0.76 0.19 0.49 0.73
#42 InfGain 15 best 0.15 0.53 0.75 -0.14 0.43 0.69
#43 combine #41 and #42 0.22 0.56 0.77 -0.12 0.44 0.70
#431 combine #41, #42 and #24 0.27 0.60 0.80 0.11 0.54 0.75

Table 1: Development experiments for task 1.2, reporting correlation and ranking scores, tested on the
development set WMT2009.

target feature β
avg target word occurrence 2.18
pseudoMETEOR 0.71
count of unknown words 0.55
count of dots -0.25
count of commas 0.15
count of tokens -0.13
count of VPs -0.06
PCFGlog -0.02
lmprob 0.01

Table 3: Beta coefficients of the best fitted logistic
regression on the German-English data set (set #33
with Stepwise Feature Set Selection)

scoring features with ReliefF (features #41x) and
Information Gain (#42). Many combinations of all
the above feature-sets are tested and the most im-
portant of them are shown in Table 1. Feature sets
are described briefly in Table 2.

For German-English, we experiment with 14
feature sets, using both variations of Logistic Re-
gression. The two highest tau scores are given by
Stepwise Feature Set Selection using feature sets
#33 and #24. We see that although baseline fea-
tures #31 alone have very low correlation, when
combined with previously successful #24, provide
the best system in terms of tau. Feature set #431
(which combines the 15 features scored higher
with ReliefF, the 15 features scored higher with In-
formation Gain and the feature set #24) succeeds
pretty well on the additional metrics MRR and
NDGC, but it provides slightly lower tau correla-
tion.

For English-Spanish, the correlation of the pro-
duced systems is significantly lower and it ap-
pears that the L2-regularized logistic regression
performs better as classification method. We ex-
periment with 24 feature sets, after more scor-
ing with ReliefF and Inf. Gain. Surprisingly
enough, Kendall tau correlation indicates that the
best model is trained only with features based

target feature β
count of unknown words -0.55
count of VPs 0.19
count of of PCFG parse trees -0.16
count of tokens 0.15
% of tokens with only letters -0.07
lmprob -0.06
pseudoMETEOR precision -0.05
source/target ratio of parse trees -0.03

Table 4: Most indicative beta coefficients of
the best fitted logistic regression on the English-
Spanish data set (set #431 with L2-regularization)

on counts of numbers and punctuation, combined
with contrastive BLEU score. This seems to rather
overfit a peculiarity of the particular development
set and indeed performs much lower on the final
test set of the shared task (tau=0.04). The second
best feature set (#431) has been described above
and luckily generalizes better on an unknown set.
It is interesting to see that this issue would have
been avoided, if the decision was taken based on
the ranking metrics MRR and NDGC, which pri-
oritize other feature sets. We assume that further
work is needed to see whether these measures are
more expressive and reliable than Kendall tau for
similar tasks.

The fitted β coefficients (in tables 3 and 4) give
an indication of the importance of each feature
(see equation 1), for each language pair. In both
language pairs, target-side features prevail upon
other features. On the comparison of the models
for the two language pairs (and the β coefficients
as well) we can see that the model settings and
performance may vary from one language pair to
another. This also requires further investigation,
given that Kendall tau and the other two metrics
indicate different models as the best ones.

The fact that the German-English set is bet-
ter fitted with Stepwise Feature Set Selec-
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set features

#24 From previous work (Avramidis, 2012):
[s+t]: PCFGlog , count of: unknown words, tokens, PCFG trees, VPs

[t]: pseudoMETEOR

#31 Baseline from WMT12 (Callison-Burch et al., 2012)
[s+t]: tokensavg , lmprob, count of: commas, dots, tokens, avg translations per source word

[s]: avg freq. of low and high freq. bi-grams/tri-grams, % of distinct uni-grams in the corpus
[t]: type/token radio

#32 All 50 “vanilla” features provided by shared-task baseline software “Quest”

#411 ReliefF best 5 features
[s+t]: % of numbers, difference between periods of source and target (plain and averaged)

[t]: pseudoBLEU

Table 2: Description of most important feature sets for task 1.2, before internal feature selection of
Logistic Regression is applied. [s] indicates source, [t] indicates target

de-en en-es
set StepFSS L2reg StepFSS L2reg

#24 0.28 0.25 0.09 0.09
#33 0.29 0.26 0.08 0.10
#411 0.22 0.17 -0.25 0.19
#431 0.27 0.25 0.09 0.11

Table 5: Higher Kendall tau correlation (on the
dev. set) is achieved on German-English by us-
ing Stepwise Feature Set Selection, whereas on
English-Spanish by using L2-regularization

tion, whereas the English-Spanish one with L2-
Regularization (table 5) may be explained by
the statistical theory about these two methods:
The Stepwise method has has been proven to be
too bound to particular characteristics of the de-
velopment set (Flom and Cassell, 2007). L2-
Regularization has been suggested as an alterna-
tive, since it generalizes better on broader data
sets, which is probably the case for English-
Spanish.

Our method also seems to perform well when
compared to evaluation metrics which have access
to reference translations, as shown in this year’s
Metrics Shared Task (Macháček and Ondřej,
2013).

3.3 Post-editing time prediction

The training for the model predicting post-editing
time is performed over the entire given data set
and the evaluation is done with 10-fold cross-
validation. We evaluated 8 feature sets with 6 re-
gression methods each, ending up with 48 experi-
ments.

The evaluation of the most indicative regression
models (two best performing ones per feature set)
can be seen in Table 6. We start with a glass-
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Figure 1: Graphical representation of the values
predicted by the linear regression model with fea-
ture set #6 (blue) against the actual values of the
development set (red)

box feature set, scored with ReliefF and conse-
quently add black-box features. We note the mod-
els that have the lowest Root Mean Square Error
and Mean Average Error.

Our best model seems to be the one built linear
regression using feature set #6. This feature set is
chosen by collecting the 17 best features as scored
by ReliefF and includes both black-box and glass-
box features. How well this model fits the devel-
opment test is represented in Figure 1.

The second best feature set (#8) includes 29
glass-box features with the highest absolute Reli-
efF, joined with the black-box features of the suc-
cessful feature set #6.

More details about the contribution of the most
important features in the linear regression (equa-
tion 2) can be seen in table 7, where the fitted β
coefficients of each feature are given. The vast
majority of the best contributing features are glass-
box features. Some draft conclusions out of the
coefficients may be that post-editing time is lower
when:
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id feature set method RMSE MAE

#1 20 glass-box features with highest absolute ReliefF MARS 91.54 59.07
SVR 93.57 55.87

#2 9 glass-box features with highest positive ReliefF Lasso 83.20 51.57
Linear 83.32 51.72

#3 16 glass-box features with highest positive ReliefF Lasso 77.54 47.16
Linear 77.60 47.27

#4 22 glass-box features with highest positive ReliefF Lasso 76.05 46.37
Linear 76.17 46.48

#5 Combination of feature sets #1 and #2 MARS 91.54 59.07
SVR 93.57 55.87

#6 17 features of any type with highest positive ReliefF Linear 74.70 45.20
Lasso 74.75 44.99

#8 Combination of #5 and #6 + counts of tokens Lasso 75.14 44.99
PLS 77.63 47.48

#6 First submission Linear 84.27 52.41
#8 Second submission PLS 88.34 53.49

Best models 82.60 47.52

Table 6: Development and submitted experiments for task 1.3

• the longest of the source phrases used for pro-
ducing the best hypothesis appears closer to
the end of the sentence

• the phrases with the highest and the lowest
probability appear closer to the end of the
translated sentence

• there are more determiners in the source
and/or less determiners in the translation

• there are more verbs in the translation and/or
less verbs in the source

• there are fewer alternative phrases with very
high probability

Further conclusions can be drawn after examining
these observations along with the exact operation
of the statistical MT system, which is subject to
further work.

4 Conclusion

We describe two approaches for two respective
problems of quality estimation, namely sentence-
level ranking of alternative translations and pre-
diction of time for post-editing MT output. We
present efforts on compiling several feature sets
and we examine the final contribution of the fea-
tures after training Machine Learning models.
Elaborate decoding features seem to be quite help-
ful for predicting post-editing time.

feature β
best hyp: position of the longest aligned
phrase in the source sentence averaged to
the number of phrases

-16.652

best hyp: position of phrase with highest
prob. averaged to the num. of phrases -14.824

source: number of determiners -9.312
best hyp: number of determiners 6.189
best hyp: position of phrase with lowest
prob. averaged to the num. of phrases -5.261

best hyp: position of phrase with lowest
future cost estimate averaged to the
number of phrases

-4.282

best hyp: number of verbs -2.818
best hyp: position of phrase with highest
future cost estimate averaged to the
number of phrases

1.002

search: number of alternative phrases
with very low future cost est. -0.528

source: number of verbs 0.467
search: number of alternative phrases
with very high probability 0.355

search: total num. of translation options -0.153
search: number of alternative phrases
with very high future cost estimate -0.142

best hyp: number of parse trees 0.007
source: number of parse trees 0.002
search: total number of hypotheses 0.001

Table 7: Linear regression coefficients for feature
set #6 indicate the contribution of each feature in
the fitted model
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