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Abstract

Sign Language Translation (SLT) is a com-
plex task that involves accurately interpreting
sign language gestures and translating them
into spoken or written language and vice versa.
Its primary objective is to facilitate communi-
cation between individuals with hearing diffi-
culties using deep learning systems. Existing
approaches leverage gloss annotations of sign
language gestures to assist the model in captur-
ing the movement and differentiating various
gestures. However, constructing a large-scale
gloss-annotated dataset is expensive and im-
practical to cover multiple languages, and pre-
trained generative models cannot be efficiently
used due to the lack of textual source context
in SLT. To address these challenges, we pro-
pose a gloss-free framework for the WMT23
SLT task. Our system primarily consists of
a visual extractor for extracting video embed-
dings and a generator responsible for producing
the translated text. We also employ an embed-
ding alignment block that is trained to align
the embedding space of the visual extractor
with that of the generator. Despite undergo-
ing extensive training and validation, our sys-
tem consistently falls short of meeting the base-
line performance. Further analysis shows that
our model’s poor projection rate prevents it
from learning diverse visual embeddings. Our
codes and model checkpoints are available at
https://github.com/HKUST-KnowComp/SLT.

1 Introduction

Machine translation has significantly improved
thanks to the development of pre-trained language
models (Mohammadshahi et al., 2022; Huang et al.,
2023). While translation within a single modality
has been extensively studied, translation involving
multiple modalities remains challenging and less
explored (Lin et al., 2023). Sign Language Trans-
lation (SLT), which translates sign gestures into
spoken language, remains an exceedingly complex
task due to two fundamental challenges. Firstly,

sign languages are visual-gestural languages that
rely on manual signs, facial expressions, and body
movements to convey information. This funda-
mental distinction sets them apart from written lan-
guages, which consist of word characters and sym-
bols. Consequently, translation models must be
able to accurately interpret visual signals and ges-
tures and develop a deep understanding of the se-
mantics involved in producing prompt translations.
However, the multimodal nature of sign languages
poses a significant challenge for models, requir-
ing them to learn and generalize these complex
interactions effectively. Moreover, sign languages
are typically represented as exceedingly lengthy
sequences of frames, surpassing the number of to-
kens in a standard sentence (Guo et al., 2018). This
requires translation models to grasp the prolonged
dependencies within the video to accurately cap-
ture the information conveyed through these visual
signals.

To tackle these challenges, methods have been
proposed that utilize pre-training a visual back-
bone based on gloss annotations (Camgöz et al.,
2020). These approaches have demonstrated ex-
ceptional performance in various multimodal trans-
lation tasks. Nevertheless, the acquisition of ex-
tensive gloss annotations comes with significant
cost and practical constraints, making it impracti-
cal to cover a wide range of multilingual translation
directions (Müller et al., 2023).

In this paper, we propose a gloss-free framework
for the SLT task. Our approach combines a pre-
trained visual backbone model (Varol et al., 2021),
which has been trained to recognize sign gestures,
with a GPT2-based language model (Radford et al.,
2019) to generate the translated sentence. To align
the embedding space between both models, we
utilize an embedding alignment block inspired by
ClipCap (Mokady et al., 2021). The final trans-
lation is produced using converted visual embed-
dings and text embeddings (Section 3). Despite

https://github.com/HKUST-KnowComp/SLT
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Schweizer Unternehmen und 
die Folgender Steuerreform 
von Präsident Trump.
(Swiss companies and the 
following tax reform by 
President Trump.)

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐹𝐹𝑝𝑝1 
,𝐹𝐹𝑝𝑝2 … ,𝐹𝐹𝑝𝑝𝐹𝐹 = 𝑉𝑉

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐹𝐹𝐴𝐴𝐴𝐴𝐹𝐹𝐸𝐸 𝑉𝑉 = {𝑇𝑇1,𝑇𝑇2 … ,𝑇𝑇𝐴𝐴}

𝐺𝐺𝐴𝐴𝐹𝐹𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸({𝑇𝑇1,𝑇𝑇2 … ,𝑇𝑇𝐴𝐴}) = {𝑆𝑆1, 𝑆𝑆2 … , 𝑆𝑆𝑆𝑆}

{𝑆𝑆1, 𝑆𝑆2 … , 𝑆𝑆𝑆𝑆}

Figure 1: An overview of our framework. We first downsample video data and feed them into the visual feature
extractor to obtain the visual embeddings. The embeddings are then passed into the alignment block to project them
into embedding inputs of the German-GPT2. They are used as the prefix of the GPT2 model to generate the final
translation results.

conducting extensive experiments with our system,
we consistently achieved a BELU score of 0.1 and
a chrF score of 7.6 on the testing set of the SRF
dataset, which is below the baseline performance.
Further analysis reveals that the embedding align-
ment block fails to differentiate between different
embedding inputs from the visual encoder. As a
result, our generation often produces repeated and
nonsensical outputs. We will make all codes and
results publicly available upon acceptance of this
paper.

2 Preliminary

2.1 Task Definition

The objective of the Sign Language Translation
(SLT) task (Fang et al., 2017; Kan et al., 2021) is to
utilize the model’s video understanding ability and
language modeling ability to translate meaningful
gesture sequence into spoken language (Varol et al.,
2021; Hu et al., 2023). Formally, our objective
is to learn a conditional probablity P (S|F r) of
generating a natural spoken language, denoted as
S = {S1, S2..., Sm} with m tokens given the raw
sign language video Fr = {F r

1 , F
r
2 ..., F

r
n} with n

frames.
To better elaborate our proposed model, we

Dataset #raw data #processed data

SRF 771 354901

Table 1: Statistics of the SRF dataset. # raw data refers
to the number of videos, and # processed data is the
amount of data after video slicing.

hereby set some notions for convenience. The
aforementioned S and Fr refer to the translated
spoken language and the sign language video be-
fore preprocessing. We use Fp = {F p

1 , F
p
2 ..., F

p
n}

to denote the preprocessed video frames. In our
proposed model, we endeavor to optimize the align-
ment block to yield better translation results while
parameters in other modules are frozen for training
efficiency.

2.2 Dataset

We use the datasets provided by Müller et al. (2023)
as our primary training and evaluation bench-
marks. Our model is exclusively trained on the
SRF dataset (Jiang et al., 2023b), while the SignSu-
isse dataset (Jiang et al., 2023a) is solely utilized
for zero-shot evaluation purposes. Both datasets
consist of sign language videos accompanied by
their corresponding translation text in German. The
statistical information for the SRF dataset can be
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found in Table 1.
The SRF (Jiang et al., 2023b) dataset comprises

videos from Standard German daily news (Tagess-
chau) and Swiss German weather forecast (Meteo)
episodes broadcast. They are further interpreted
into Swiss German Sign Language by hearing inter-
preters via Swiss National TV. In the SRF dataset
released by Müller et al. (2022), there are a total of
354901 video slices covering episodes from 2014
to 2022.

The SignSuisse (Jiang et al., 2023a) dataset con-
tains 18221 lexical items in Swiss German Sign
Language, French Sign Language of Switzerland,
and Italian Sign Language of Switzerland, repre-
sented as videos with corresponding spoken lan-
guage translations.

The BSL-1k (Albanie et al., 2020) is a large-
scale sign language recognition dataset constructed
based on British Sign Language(BSL) signs. The
authors leverage the observation that signers often
mouth the word they are signing simultaneously,
providing additional visual cues. They use visual
keyword spotting to detect the mouthings and align
them with the subtitles to determine whether and
when a keyword of interest is uttered by a talking
face using visual information. The dataset is then
used to train a strong sign recognition model for
co-articulated signs in BSL and serves as excellent
pretraining for other sign languages and bench-
marks. Thus, in our paper, it is reasonable for us to
use a model pretrained on BSL-1k as our visual fea-
ture extractor and expect it to yield meaningful and
informative video representations for the model to
utilize.

3 Method

This section introduces our proposed framework,
which is depicted in Figure 1. While previous sys-
tems (Dey et al., 2022; Shi et al., 2022; Tarres
et al., 2022) primarily employ an encoder-decoder
paradigm and train their models from scratch to
address this task, we distinguish ourselves by be-
ing the first to utilize a pre-trained language model
for this task, as these language models possess
strong natural language understanding and gen-
eration ability (Wang et al., 2023c, 2022; Fang
et al., 2021b,a, 2023; He et al., 2022; Bai et al.,
2023a,b). Specifically, we leverage the pre-trained
I3D model provided by Varol et al. (2021) as our
visual extractor backbone and employ a German-
GPT2 model (Schweter, 2020) as the generator’s

backbone.

3.1 Video Extractor
We use the Two-Stream Inflated 3D ConvNets
(I3D; Carreira and Zisserman, 2017) that is pre-
trained on the BSL-1k (Albanie et al., 2020) dataset
as our visual extractor backbone. I3D was first pro-
posed by Carreira and Zisserman (2017) aiming to
mitigate the 2D convolution network failure to cap-
ture the temporal information behind the video data.
To overcome this, I3D directly expands the original
2D convolution network, which yields significant
success in 3-dimensional space by expanding extra
dimension to the kernel and pooling layer. When
the kernel and pooling layers are extended to 3D
in I3D, these layers are initialized using the pre-
trained weights from the corresponding 2D image
classification networks. Overall, the I3D model
offers a powerful framework for action recognition
by leveraging the strengths of both image classi-
fication architectures and spatio-temporal feature
extraction in videos. For the SLT task, we ask the
model to transform a 64 frames (Fp) video into a
1024-dimensional tensor (V), denoted as:

Extractor({F p
1 , F

p
2 ..., F

p
n}) = V

3.2 Embedding Alignment Block
Inspired by the success of ClipCap (Mokady et al.,
2021), we then train an embedding alignment block
to project the obtained visual embeddings V into
textual embeddings T for further processing by
German-GPT2. ClipCap was originally designed
by Mokady et al. (2021) to tackle the task of im-
age captioning (Ou et al., 2023). In the paper, the
authors utilized the expressive power of an image
feature extractor and a generative language model.
By adding an alignment layer in between, the rep-
resentation of the visual modality can be projected
to the text modality for the language model to gen-
erate meaningful captions. The extraordinary abil-
ity shown by this innovative architecture makes
it reasonable for us to adopt it in our framework.
We implement the alignment block by stacking
six transformer encoder layers together. Two fully
connected neural networks are also placed before
and after the alignment block to extend the visual
embeddings into a sequential format and densify
the aligned embeddings into prefix embeddings of
German-GPT2, respectively. Formally, this process
can be denoted as:

Alignment(V) = {T1, T2..., Tm}
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BLEU chrF BLEURT

Submission all SS SRF all SS SRF all SS SRF

Baseline 0.09±0.03 0.15±0.06 0.10±0.05 12.4±0.4 12.2±0.5 12.5±0.5 0.072±0.003 0.083±0.005 0.060±0.005

KnowComp 0.07±0.05 0.06±0.02 0.11±0.09 7.6±0.3 8.2±0.4 7.2±0.4 0.083±0.005 0.084±0.007 0.081±0.007

Table 2: The experiment result of our proposed model comparing to the baseline released by the shared task
organizer. Although our model was trained only on SRF, we still shown stronger performance on BLEURT than the
baseline model in domain of SS and all. SS dataset is OOD and all is partially OOD for our model.

3.3 Text Generator
Finally, we leverage a pre-trained German-GPT2
model as the text generator to generate the final
translations by feeding the previously acquired tex-
tual prefix embeddings as the input. The German-
GPT2 is trained on a large German corpus GC4
and can generate fluent german sentences. This
step can be finally denoted as:

Generator({T1, T2..., Tm} = {S1, S2..., Sf}

4 Experiments

4.1 Experiment Setup
We first describe our data preprocessing procedure
and experiment settings.

4.1.1 Data Preprocessing
We first preprocess the raw data by dividing the
video into smaller segments, or video slices, and
match them with their corresponding ground truth
German translations. To address a potential issue
with the video extractor’s encoding capacity, we
adopt a downsampling strategy. Specifically, we se-
lect the first frame from every three frames in each
video slice. Doing so reduces the number of frames
and alleviates encoding challenges. Additionally,
we encounter cases where certain video slices have
fewer than 64 frames. To maintain consistency in
video length, we append pure black frames to the
end of these slices. To ensure compatibility with
the video feature extractor’s training environment,
we resize each video frame to 224 × 224 dimen-
sion. This step guarantees that the model functions
effectively within its designated parameters.

4.1.2 Experiment Setting
To enhance training efficiency, the parameters of
the two backbone models are frozen, while the
parameters of GPT2 are unfrozen after a certain
iteration. This ensures that the randomly initialized
transformer encoder does not compromise the lan-
guage modeling ability of the GPT2 model. In our

experiment, we set the batch size to 4, the learning
rate to 5e-6, and changed the training parameters
at iteration 66000. We employ an Adam (Kingma
and Ba, 2015) as our optimizer and save the model
checkpoint every 1000 iterations. The input and
output lengths of GPT2 were fixed at 20, as we ob-
served that most of the ground truth lengths were
20 or less, making this maximum length setting
cover a significant portion of the training data. We
set the number of heads in the multi-head attention
to 8 and the prefix length for GPT2 to 4. Before
feeding the embedding to the alignment block, the
sequence length for translating the visual embed-
ding was adjusted to 2 × 4, where 4 represents
the GPT2 model’s prefix number. Our model con-
sists of 6 stacked encoder layers forming the align-
ment block. All experiments were conducted on
NVIDIA GeForce GTX 1080 Ti with 11G memory.

4.2 Results

After extensive training and evaluation, our system
achieves a BLEU (Papineni et al., 2002) score of
0.1 and a Chrf (Popovic, 2015) score of 7.6 in this
shared task. These results are obtained from the
official result submission platform. We present our
experimental findings in comparison to the base-
line model provided by the organizers, as shown
in Table 2. Despite training our model solely on
SRF, we outperform the baseline regarding the
BLEURT (Sellam et al., 2020) score in SignSuisee
and a combination of both datasets, which are con-
sidered out-of-domain evaluations for our model.
However, it is important to note that our system
falls significantly below the baselines and systems
from other submissions. One potential explanation
for this discrepancy could be that our system has
not yet reached its optimal state, as the alignment
block is trained from scratch, which could be quite
challenging to converge. We conduct a fine-grained
analysis in the following section to further investi-
gate this hypothesis.
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Original Subtitles Generated Subtitles

Das Parlament muss nun auch die Städte ins Boot
holen.<pad><pad><pad><pad><pad>

Der Schweiz. Sie werden in der Schweiz geboren.
Deutschland......

da fehlte oft das richtige Tim-
ing,<pad><pad><pad><pad><pad>

"Der Stadt Zürich. Zürich. Zürich. Zürich.. die Stadt
Zürich. Zürich.. Zürich"

Am Samstagabend zunächst noch Föhn, dann wird es
feuchter.<pad><pad><pad>

"Der Schweizer Regierungspräsidentin der Schweiz.. 20.
20. 20. 20. 20."

Danke, Andrea.<pad><pad><pad><pad> "Der Film die Welt in den Abgrund. Rom. Deutsch-
land......."

Es liegt an uns, Lösungen zu finden, um dieses Spiel zu
gewinnen.<pad>

""Ich bin auch nicht, weil ich habe das nicht so viel.
West.W.."

Table 3: Examples of our generated subtitles with their corresponding ground truth subtitles. We observe that 4 out
of 5 of our generated sentences generate the same token for the first one and keep generating the same token at the
end of its sentence. We try to analyze the reason for this in the following section.

4.3 Analysis

To analyze the reasons behind the failure of our sys-
tem and its tendency to generate repetitive words
in translations, we conduct a tSNE plot analysis
of the visual embeddings before and after passing
through the embedding alignment block. The re-
sults are presented in Figure 2. Upon examining
the plot, we observe that the orange markers, rep-
resenting the embeddings before alignment, were
scattered, occupying a large area in the plot. In
contrast, the blue crosses, corresponding to the em-
beddings after alignment, are densely concentrated
in the middle of the plot. This stark contrast proves
that the model loses its ability to differentiate be-
tween different visual features after projecting the
embeddings from the I3D embedding space to the
German-GPT2 embedding space. One potential ex-
planation for this is that the embedding alignment
block has not been effectively trained under the
current training protocol. Further investigation is
required to understand the underlying causes and
devise appropriate solutions.

4.4 Case Study

In Table 3, we present several instances of our gen-
eration using the data from the SRF dataset. The
left column displays the ground truth sentences
with a pad token appended at the end. In the right
column, we showcase the generated sentences. No-
tably, 4 out of 5 of these sentences begin with “Der,”
and some consistently produce the same token, par-
ticularly in the final few positions. This further
illustrates the subpar performance of our model.
One possible explanation for this issue is the con-
centration of embeddings after the alignment block,

 
Figure 2: The tSNE comparison plot of the video embed-
dings before and after the embedding alignment block.
We observe that the embeddings of different videos are
dispersely distributed. However, they exhibit a denser
distribution after alignment, which challenges generat-
ing coherent natural language descriptions.

which increases the likelihood of generating similar
tokens. In the future, large-scale pertaining and ap-
propriately leveraging large language models (Ope-
nAI, 2023; Chan et al., 2023; Yu et al., 2023) and
large multimodal foundation models (Zhu et al.,
2023) may also be considered to improve the per-
formance of this task further.

5 Conclusions

In conclusion, this paper presents the KnowComp
system for the WMT23-SLT Sign Language Trans-
lation Shared Task. Our system utilizes two pre-
trained backbone models for visual feature extrac-
tion and translation text generation. However, this
architecture fails, resulting in unsatisfactory perfor-
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mance across all evaluation datasets. Our system’s
performance is significantly below the baseline’s
performance. We have identified a critical weak-
ness in our model through further analysis, includ-
ing embedding t-SNE plots and case studies. The
embedding alignment block unexpectedly densi-
fies all visual embeddings together, leading to the
generator generating repeated tokens. To enhance
our model’s performance in future work, an appro-
priate data augmentation technique (Wang et al.,
2023b,a; Gowda et al., 2022) can be implemented
to help the alignment block distinguish different
input features more efficiently. Also, future works
can focus on whether further increasing the model
capacity could help to mitigate the issue shown
in the analysis section considering the advancing
computation resources.
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