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Abstract

In this paper, we describe the constrained MT
systems submitted by Samsung R&D Institute
Philippines to the WMT 2023 General Trans-
lation Task for two directions: en→he and
he→en. Our systems comprise of Transformer-
based sequence-to-sequence models that are
trained with a mix of best practices: compre-
hensive data preprocessing pipelines, synthetic
backtranslated data, and the use of noisy chan-
nel reranking during online decoding. Our
models perform comparably to, and sometimes
outperform, strong baseline unconstrained sys-
tems such as mBART50 M2M and NLLB 200 MoE
despite having significantly fewer parameters
on two public benchmarks: FLORES-200 and
NTREX-128.

1 Introduction

This paper describes Samsung R&D Institute
Philippines’s submission to the WMT 2023 Gen-
eral Translation task. We participate in two trans-
lation directions: en→he and he→en, submitting
two constrained single-direction models based on
the Transformer (Vaswani et al., 2017) sequence-to-
sequence architecture. We employ a number of best
practices, using a comprehensive data preprocess-
ing pipeline to ensure parallel data quality, create
synthetic data through carefully-curated backtrans-
lation, and use reranking methods to select the best
candidate translations.

Our systems achieve strong performance on pub-
lic benchmarks: 44.24 BLEU and 33.77 BLEU
for FLORES-200 and NTREX-128 en→he, re-
spectively, and; 42.42 BLEU and 36.89 BLEU
on FLORES-200 and NTREX-128 he→en, respec-
tively. Our systems outperform mBART50 M2M and
slightly underperform against NLLB 200 MoE de-
spite having significantly less parameters compared
to these unconstrained baselines.

We detail our data preprocessing, model training,
data augmentation, and translation methodology.

Additionally, we illustrate hyperparameter sweep-
ing setups and study the effects of hyperparameters
during online decoding with reranking.

2 Methodology

2.1 Data Preprocessing

Given that a significant portion of the training
dataset is synthetically-aligned, we need to use a
comprehensive data preprocessing pipeline to en-
sure good translation quality. In particular, we use
a combination of heuristic-based, ratio-based, and
embedding-based methods to filter our data.

Heuristic-based The following heuristic-based
filters based on Cruz and Cheng (2021) are used
before applying the others:

• Language Filter – We use use pycld31 to
filter out sentence pairs where one or both
sentences have more than 30% tokens that are
neither English nor Hebrew.

• Named Entity Filter – We use NER models
(Bareket and Tsarfaty, 2021; Yang and Zhang,
2018) to check if both sentences in a pair have
matching entities (if any). Pairs that contain
entities that do not match are removed.

• Numerical Filter – If one sentence in a pair
has a number (ordinal, date, etc.), we also
check the other sentence if a matching number
is present. If a match is not detected, the pair
is removed.

Ratio-based We employ ratio-based filters on
tokenized sentence pairs following Cruz and
Sutawika (2022) and Sutawika and Cruz (2021).
We first tokenize using SacreMoses2 then apply the
following ratio-based filters:

1https://pypi.org/project/pycld2/
2https://github.com/alvations/sacremoses
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Pairs Words (en) Words (he)
Original 72,459,348 701,991,594 566,555,530
Original Filtered 48,278,395 385,975,984 312,639,617
Synthetic en→he 10,000,000 165,595,289 145,849,940
Synthetic en→he Filtered 7,143,725 115,239,312 95,954,020
Synthetic he→en 73,278,018 1,471,827,973 1,056,677,671
Synthetic he→en Filtered 47,372,416 659,409,236 541,376,459

Table 1: Corpus Statistics. “Filtered” refers to the number of pairs / words that remain after the filtering script is
applied to the dataset. Note that “Words” is an approximation gathered by using the wc -l * command on the
plaintext files.

• Length Filter – We remove pairs containing
sentences with more than 140 characters.

• Token Length Filter – We remove pairs that
contain sentences with tokens that are more
than 40 characters long.

• Character to Token Ratio – We remove pairs
where the ratio between character count and
token count in at least one sentence is greater
than 12.

• Pair Token Ratio – We remove pairs where
the ratio of tokens between the source and
target sentences is greater than 4.

• Pair Length Ratio – We remove pairs where
the ratio between the string lengths of the
source and target sentences is greater than 6.

Embedding-based Finally, we experiment with
the use of sentence embedding models to compute
embedding-based similarity between a sentence
pair. We use LaBSE (Feng et al., 2020) models to
embed both the source and target sentences then
compute a cosine similarity score between the two.
The pair must have a similarity score 0.7 ≤ s ≤
0.96 to be kept.

Statistics on the original and filtered corpus can
be found on Table 1.

After preprocessing the parallel data, we learn
a shared BPE (Sennrich et al., 2015b) vocabulary
using SentencePiece3 (Kudo and Richardson, 2018)
with 32,000 units. All models in this paper use the
same shared vocabulary.

2.2 Model Architecture

We experiment with two model sizes for each lan-
guage pair: a Base model with 65M parameters and

3https://github.com/google/sentencepiece

Training Hyperparameters
Parameters 65M and 200M
Vocab Size 32,000
Tied Weights Yes
Dropout 0.3
Attention Dropout 0.1
Weight Decay 0.0
Label Smoothing 0.1
Optimizer Adam
Adam Betas β1=0.90, β2=0.98
Adam ϵ ϵ=1e-6
Learning Rate 7e-4
Warmup Steps 4,000
Total Steps 1,000,000
Batch size 64,000 tokens

Table 2: Hyperparameters used during training. When
reporting model sizes, Base refers to 65M parameters,
while Large refers to 200M.

a Large model with 200M parameters. Both mod-
els use the standard Transformer (Vaswani et al.,
2017) sequence-to-sequence architecture and are
trained using Fairseq (Ott et al., 2019) with the
hyperparameters listed in Table 2.

We parallelize with 8 NVIDIA Tesla P100 GPUs
and initially train for a total of 100K steps for ex-
perimentation. For the submitted systems trained
with backtranslated data, we train for a total of 1M
steps.

2.3 Backtranslation

We use backtranslation (Sennrich et al., 2015a) as
a form of data augmentation to improve our initial
models. We generate synthetic data via combined
top-k and nucleus sampling:

δk∑
i=0

P (ŷ
(T )
i |x; ŷ(T−1)) ∗ δtemp ≤ δp (1)
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Backtranslation Hyperparameters
Top-k (δk) 50
Top-p (δp) 0.93
Temperature (δt) 0.7
Beam 1.0
Length Penalty 1.0

Table 3: Hyperparameters used during backtranslation.

where δk is the top values considered for top-k
sampling, δtemp is the temperature hyperparameter,
and δp is the maximum total probability for nucleus
sampling.

Backtranslation is only performed once using
the provided monolingual data. We produce a total
of 10,000,000 synthetic sentences for the en→he
direction and 73,278,018 synthetic sentences for
the he→en direction. The same data preprocessing
used on the original parallel corpus is then applied
to the synthetic corpus. We produce backtransla-
tions using Large 100K models with the sampling
hyperparameters listed in Table 3.

Statistics on generated synthetic data before and
after filtering can be found on Table 1.

2.4 Noisy Channel Reranking
We further improve translations by using Noisy
Channel Reranking (Yee et al., 2019), which
reranks every candidate translation token ŷ

(T )
i us-

ing Bayes’ Rule, as follows:

P (ŷ
(T )
i |x; ŷ(T−1)) =

P (x|ŷ(T−1))P (ŷ(T−1))

P (x)

(2)

where P (ŷ
(T )
i ) refers to the probability of the ith

candidate token at timestep T given source sen-
tence x and current translated tokens ŷ(T−1).

All probabilities are parameterized as stan-
dard encode-decoder Transformer neural net-
works: the Direct Model fϕD

(x, ŷ(T−1)) mod-
els P (ŷ

(T )
i |x; ŷ(T−1)) or translation between

source to target language; the Channel Model
fϕC

(x|ŷ(T−1)) models P (x|ŷ(T−1)), or the proba-
bility of the target translating back into the pre-
dicted translation, and; the Language Model
fϕL

(ŷ(T−1)) models P (ŷ(T−1)) or the probability
of the translated sentence to exist. P (x) is gener-
ally not modeled since it is constant for all y. This
allows us to leverage a strong language model to
guide the outputs of the direct model, while using

Decoding Hyperparameters
Beam 5
Length Penalty 1.0
k2 5
CM Top-k 500
δch en→he 0.2297
δlm en→he 0.2056
δch he→en 0.2998
δlm he→en 0.2594

Table 4: Hyperparameters used for the final submission
models. The values listed for δch and δlm are the ones
used for the final submission models. For testing with
Large 100K models, we set both δch and δlm to 0.3.
“k2” refers to the number of candidates sampled per
beam while “CM Top-k” refers to the number of most
frequent tokens in the channel model’s vocabulary that
is used as its output vocabulary during decoding to save
space.

a channel model to constrain the preferred outputs
of the language model (which may be unrelated to
the source sentence).

During beam search decoding, we rescore the top
candidates using the following linear combination
of all three models:

P (ŷ
(T )
i |x; ŷ(T−1))

′
=

1

t
log(P (x|ŷ(T−1))

+
1

s
[δchlog(P (x|ŷ(T−1))

+δlmlog(P (ŷ(T−1)))]

(3)

where s and t are source / target debiasing terms,
δch refers to the weight of the channel model, and
δlm refers to the weight of the language model.

For Noisy Channel Reranking, our direct and
channel models use the same size and setup at all
times (i.e. if the direct model is a Large model
trained for 100K steps, then the channel model is
also a Large model trained for 100K steps in the
opposite translation direction).

For the language model, we train one Base-sized
decoder-only Transformer language model for En-
glish and one for Hebrew. We concatenate the
cleaned data from the parallel corpus with the pro-
vided monolingual data for each language to train
the LM. We use the same training setup as with
translation models, except we use a weight decay
of 0.01 and a learning rate of 5e-4.

Hyperparameters used for decoding with Noisy
Channel Reranking can be found in Table 4.



106

2.5 Evaluation

We evaluate our models using two metrics: BLEU
(Papineni et al., 2002) and ChrF++ (Popović, 2015),
both scored via SacreBLEU4 (Post, 2018). We
develop our models using both the FLORES 200
(Costa-jussà et al., 2022) and NTREX 128 (Fed-
ermann et al., 2022) datasets, using the validation
sets during training and reporting scores on the test
sets.

To benchmark our models’ performance, we
mainly compare BLEU and ChrF++ against two
(unconstrained) models: mBART 50 M2M (Tang
et al., 2020), a 610M-parameter finetuned version
of mBART for many-to-many translation, and NLLB
200 MoE (Costa-jussà et al., 2022), the full 54.5B-
parameter mixture-of-experts version of NLLB 200
for many-to-many translation.

2.6 Hyperparameter Search

To find the best values for δch and δlm, as well as
to understand how these parameters affect perfor-
mance, we use Bayesian Hyperparameter Search.
We use the Large 1M + BT models and run 1000 it-
erations of search, keeping the length penalty static
at 1.0, and sampling both δch and δlm from a gaus-
sian with minimum of 0.01 and maximum of 0.99.

We perform this for both en→he and he→en
translation directions and use the results for the
final submission model.

3 Results

A summary of our results on benchmarks can be
found on Table 5.

3.1 Benchmarking Results

Our submission systems (Large 1M + BT + NC)
exhibit strong performance on both translation di-
rections. On FLORES-200, we achieve 44.24
BLEU for en→he and 42.42 BLEU for he→en.
The same systems score 33.77 BLEU for en→he
and 36.89 BLEU for he→en on NTREX-128.

We note that these systems perform strongly
when compared against much larger, unconstrained
baseline models. On FLORES-200, we signifi-
cantly outperform mBART 50 M2M on en→he by
+24.75 BLEU and on he→en by +11.92 BLEU
despite having 67% less parameters (200M vs
610M). Notably, our system performs only slightly

4SacreBLEU outputs the following signature
for evaluation: nrefs:1|case:mixed|eff:no|tok:spm-
flores|smooth:exp|version:2.2.1

worse compared to NLLB 200 MoE despite having
96% less parameters compared to the mixture-of-
experts model. On FLORES-200, we perform -2.56
BLEU worse on en→he and -6.58 BLEU worse on
he→en compared to NLLB 200 MoE.

3.2 Hyperparameter Search Results

In order to find optimal hyperparameters for both
δch and δlm, we ran bayesian hyperparameter
search for both at the same time while keeping
length penalty static. We plot the results of the hy-
perparameter search over 1000 iterations in Figure
1.

We observe that performance is optimal when
both hyperparameters are set to 0.2∼0.3, making
performance increasingly worse as both hyperpa-
rameters approach closer to 1. We hypothesize
that this signifies the model capturing the origi-
nal distribution close enough that it does not need
much correction or aid from the accompanying lan-
guage model. Noisy channel reranking, however, is
still empirically shown to be useful in this case as
guidance from the language model produces better
candidates in cases where the direct model may be
searching a too-constrained space.

3.3 Ablations

We explored multiple configurations of our sub-
mission systems in terms of model size, presence
of synthetic data during training, and the use of
reranking methods during online decoding. Our
results show that each step improves performance
directly:

• The initial Base 100K performs at 39.88
BLEU for en→he on FLORES-200.

• Increasing the size to 200M parameters
(Large 100K) improves performance by
+1.38 BLEU.

• Adding backtranslated data (Large 100K +
BT) is by far the most beneficial, improving
performance by +2.06 BLEU.

• We then experiment with longer training times
(1M iterations for Large 1M + BT) to adapt
to the new dataset size, increasing the score
by +0.44 BLEU.

• Finally, using noisy channel reranking (Large
1M + BT + NC) improves the score by +0.48
BLEU.
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FLORES-200 NTREX-128
EN → HE HE → EN EN → HE HE → EN

Model BLEU ChrF++ BLEU ChrF++ BLEU ChrF++ BLEU ChrF++
Base 100K 39.88 56.34 12.06 29.46 31.47 48.32 29.85 52.53
Base 100K + NC 40.22 56.55 38.75 60.52 32.10 48.93 31.86 54.57
Base 100K + BT 41.50 57.46 38.73 60.80 31.27 47.90 34.09 56.10
Base 100K + BT + NC 41.66 57.59 40.43 62.17 32.05 48.62 35.76 57.65
Large 100K 41.26 57.46 39.07 60.06 32.49 48.95 31.08 53.19
Large 100K + NC 41.46 57.64 40.53 61.49 32.80 49.34 33.12 55.16
Large 100K + BT 43.32 58.62 40.91 61.58 32.90 49.11 35.48 56.04
Large 100K + BT + NC 43.26 58.72 41.92 62.64 33.18 49.42 36.79 57.37
Large 1M + BT 43.76 58.29 41.00 61.16 33.35 49.22 35.83 56.02
Large 1M + BT + NC 44.24 59.36 42.42 62.21 33.77 49.69 36.89 56.92
mBART50 M2M (610M) 19.49 46.7 30.50 55.00 14.80 42.30 27.02 51.21
NLLB 200 MoE (54.5B) 46.80 59.80 49.00 67.40 - - - -

Table 5: Compiled results for all experiments. “BT” refers to the model being trained with backtranslated data in
addition to original filtered data. “NC” refers to the use of Noisy Channel Reranking. Evaluation scores for NLLB
200 MoE are taken from its official published scores for FLORES-200. We fail to report independent NTREX-128
scores for NLLB 200 MoE due to a lack of computational resources.

Figure 1: Bayesian hyperparameter search results for δch and δlm while keeping constant length penalty. The
leftmost column shows BLEU score against both δch and δlm with the best performing model (Large 1M + BT +
NC) plotted in red. The middle and rightmost columns show δch and δlm against BLEU, respectively, with their
respective regression lines (in red) and regression coefficient (m) in the caption.
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Overall, all of our methods improve performance
by a total of 4.36 BLEU for the en→he direction
on FLORES-200.

We note an interesting jump in performance
from Base 100K to Large 1M + BT + NC on the
FLORES-200 he→en direction at +30.36 BLEU.
Base 100K underperforms at 12.06 BLEU, and we
hypothesize that this is due to the model not having
enough capacity to embed information from He-
brew, which causes it to greatly benefit from the
guidance of a language model during noisy channel
reranking.

4 Conclusion

In this paper, we describe our submissions to the
WMT 2023 General Translation Task. We partici-
pate in two constrained tracks: en→he and he→en.

We submit two monodirectional models based
on the Transformer architecture. Both models are
trained using a mix of original and synthetic back-
translated data, filtered and curated using a com-
prehensive data processing pipeline that combines
embedding-based, heuristic-based, and ratio-based
filters. Additionally, we employ noisy channel
reranking to improve translation candidates using
a language model and a channel model trained in
the opposite direction.

On two benchmark datasets, our systems out-
perform mBART50 M2M and perform slightly worse
than NLLB 200 MoE, both unconstrained systems
with significantly more parameters.

Our results show that established best practices
still perform strongly on constrained systems with-
out the need for extraneous data sources as is with
unconstrained systems for the same translation di-
rections.

Limitations

We benchmark on datasets that are publicly avail-
able with permissive licenses for research.

We note that we are unable to study scale prop-
erly for translation models due to a lack of stronger
compute resources. The same constraint also pre-
vents us from training multiple iterations of the
same model with differing random seeds. Our sys-
tems’ true performance may thus be higher or lower
depending on the machine random state at the start
of training time.

Lastly, our models are trained on Hebrew, which
is a language that we do not speak. We are therefore

unable to manually evaluate if the output transla-
tions are correct, natural, or semantically sound.

Ethical Considerations

Our paper replicates best practices in data prepro-
cessing, model training, and online decoding for
translation models. Within our study, we aim to
create experiments that replicate prior work under
comparable experimental conditions to ensure fair-
ness in benchmarking.

Given that we do not speak the target language in
the paper, we report performance in comparison to
other existing models. We do not claim that “strong”
performance in a computational setting correlates
with good translations from a human perspective.

Lastly, while we do not use human annotators
for this paper, the conference (WMT) itself does
for human evaluations on the General Translation
Task. We disclose this fact and note that annota-
tions (and therefore scores) may be different across
many speakers of Hebrew.
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