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Abstract

The Metric Score Landscape Challenge
(MSLC23) dataset aims to gain insight into
metric scores on a broader/wider landscape of
machine translation (MT) quality. It provides a
collection of low- to medium-quality MT out-
put on the WMT23 general task test set. To-
gether with the high quality systems submitted
to the general task, this will enable better in-
terpretation of metric scores across a range of
different levels of translation quality. With this
wider range of MT quality, we also visualize
and analyze metric characteristics beyond just
correlation.

1 Introduction

Under time and human resource constraints, auto-
matic metrics are often used as a proxy of manual
evaluation for machine translation (MT) quality.
The WMT Metrics shared task evaluates how well
a variety of automatic metrics correspond to human
judgments of MT quality, as evaluated on the WMT
General (formerly News) shared task data. Those
MT systems being evaluated are typically high-
performing systems, especially for high-resource
language pairs. However, in practice, the lessons
learned are applied to a broader range of systems
in development, including low-resource and low-
quality output.

This challenge set1 aims to gain insight into
metric scores across a broader MT quality land-
scape. It provides a collection of low- to medium-
quality MT output on the WMT23 general task test
set. This serves several purposes. Together with
the high quality systems submitted to the general
task, this will enable more thorough understand-
ing of metric scores across a range of different
levels of translation quality: useful knowledge for
researchers considering applying these metrics to
lower-resource language pairs or lower-performing

1Available at https://github.com/nrc-cnrc/MSLC23

domains. This challenge set also allows us to ex-
plore metric characteristics beyond just correlation,
which has been a main focus of past work. By ex-
panding the range of MT quality analyzed, we shed
light on some unexpected or under-explored proper-
ties of metrics, such as metrics that can distinguish
between high quality systems but are not able to
differentiate different levels of MT quality on the
lower end of the quality scale (or vice versa) and
metrics that use their space of scores in very differ-
ent ways (e.g., discretized, or with specific score
ranges with particularly large numbers of ties).

We focus on four language pairs:
Chinese→English (ZH→EN), Hebrew↔English
(HE↔EN), and English→German (EN→DE).
Three of these correspond to the focus languages
of the WMT 2023 Metrics shared task (EN→DE,
HE→EN, ZH→EN), and they also cover several
language families and aspects of translation
evaluation (i.e., the paragraph-level evaluation of
EN→DE), as well as including a sentence-level
out-of-English direction (EN→HE). We combine
source and reference data from the news portion of
the WMT 2023 General MT task test sets with our
challenge set, the low- and medium-quality MT
output that we generated to cover a range of MT
quality.

We begin by describing the training data (Sec-
tion 3.1) and models (Section 3.2) used in for con-
structing our challenge set (Section 3.3). We also
briefly describe the additional data (Section 4) and
metrics (Section 5) analyzed. In Section 6 we
analyze the distribution of different metrics over
the challenge set. We find that some metrics ex-
hibit strikingly different characteristics on the low-
quality systems as compared to the systems sub-
mitted to WMT, while others exhibit unexpected
characteristics (e.g., large numbers of tied scores)
that would not have been apparent from standard
correlational analysis or from high-quality WMT
submitted systems alone. We conclude by arguing

https://github.com/nrc-cnrc/MSLC23
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that examining metric characteristics and perfor-
mance over a wider landscape of MT quality—or
indicating clearly when a metric has only been
tested on high-quality MT—is an important factor
for researchers to consider when building, present-
ing, and applying new metrics (especially if those
metrics will be applied to lower-quality outputs).

2 Related Work

Przybocki et al. (2009) outlined four objectives in
the search for new and improved automatic MT
evaluation metrics: 1) “high correlation with hu-
man assessments of translation quality”; 2) “ap-
plicable to multiple target languages”; 3) “ability
to differentiate between systems of varying qual-
ity” and finally, 4) “intuitive interpretation”. Over
the years, the WMT Metrics shared tasks (Callison-
Burch et al., 2007; Bojar et al., 2017b; Freitag et al.,
2021, 2022, i.a.) focused mainly on evaluating MT
evaluation metrics on the first two objectives.

Many other research efforts on meta-evaluation
of metrics also focused on their ability to corre-
late with human judgment. Graham and Baldwin
(2014) introduced Williams’ significance tests for
understanding the confidence of the correlation
analysis. Mathur et al. (2020) pointed out that Pear-
son’s correlation is sensitive to outliers and pro-
posed to remove outliers in Pearson’s correlation
analysis at system level. Kocmi et al. (2021) pro-
posed to use pairwise accuracy to evaluate metrics
based on whether the metric’s pairwise rankings of
two systems agrees with human pairwise rankings.
Deutsch et al. (2023) introduced a tie calibration
procedure enabling fair comparison between met-
rics that do and do not predict ties for pairwise ac-
curacy analysis at the segment level. Marie (2022)
and Lo et al. (2023) studied the relationship of met-
rics’ score differences and statistical significance of
ranking decision. Notably, these works are mostly
based on the data released by WMT Metrics shared
task. That means the translation output scored by
the metrics in these work were generated by the par-
ticipants of the WMT News/General Translation
shared task, typically consisting of high-quality
MT output.

There is growing interest in understanding met-
ric performance beyond correlation. Moghe et al.
(2023) note that neural metrics are not inter-
pretable at the segment level across different lan-
guage pairs. The WMT Metrics shared task intro-
duced the challenge sets subtask (Freitag et al.,

2021, 2022) to challenge metrics on particular
translation errors, including negation and polar-
ity, word/sentence addition/omission, tokenization,
punctuation, numeric expression, casing number
swapping, spelling, etc., in order to shed light on
metric strengths and weaknesses. The challenge
sets created by Macketanz et al. (2018); Avramidis
et al. (2020); Avramidis and Macketanz (2022)
were more linguistically motivated and covers more
than 100 phenomena, including tenses, relative
clauses, idioms, focus particles, etc. The ACES
challenge set (Amrhein et al., 2022) covers 146
translation directions and 68 types of errors, rang-
ing from simple perturbations to more complex er-
rors based on discourse and real-world knowledge.
The SMAUG challenge set (Alves et al., 2022) and
the HWTSC challenge set (Chen et al., 2022) fo-
cused on the robustness of metrics on translation
errors involving named entities, numeric/date/time
entities, etc.

We note that even as MT evaluation metrics be-
come better at correlating with human judgment
on translation quality for high-quality MT systems,
metric performance may be untested on low- to
medium-quality MT output. Hence, we design the
MSLC23 challenge set to gain insights of metric
behavior on a more complete landscape.

3 Challenge Set

The challenge set consists of data translated by
MT systems of varying quality. We describe the
training data used to build these systems as well as
the MT models.

3.1 Training Data

To build the lower-quality MT systems that we an-
alyze in this work, we use standard WMT datasets
from WMT 2023 (Kocmi et al., 2023) for EN→DE
and HE↔EN and from WMT 2017 (Bojar et al.,
2017a) for ZH→EN. For EN→DE and ZH→EN,
we used the newstest2020 data as our validation
set. For HE↔EN, we used a random sample of
2000 lines, ensuring no overlap between sentence
pairs in the training and validation set. For full de-
tails of training data, see Appendix A. Appendix B
describes the preprocessing and subword segmen-
tation performed.

3.2 MT Models

We build two main types of systems: baselines and
pseudo-low-resource systems. All systems were
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built using Sockeye-3.1.31 (Hieber et al., 2022),
commit 13c63be5, with PyTorch-1.12.1 (Paszke
et al., 2019). For more details on parameters and
training, see Appendix C.

The baselines are standard Transformer models
trained over the available data, but without any ad-
ditional components (e.g., backtranslation, factors,
tagging, etc.). The pseudo-low-resource systems
are produced using subsets of the training data, to
simulate lower-resource settings (see Appendix D
for details). We checkpoint all systems frequently
so that we can use output at various levels of train-
ing as representative of different levels of quality.

We note that the EN→DE 2023 shared task is
performed at the paragraph level. In our work we
do not perform paragraph-level MT; instead we use
as a baseline sentence segmentation, translation of
the individual sentences, and concatenation back
into paragraphs of the resulting translation output.

3.3 Translation Output

We use the news data portions of each of the
2023 General MT task test sets for these language
pairs. This consists of 139 paragraphs for EN→DE
(translated by 12 different systems), 516 lines for
EN→HE (translated by 6 different systems), 1558
lines for HE→EN (translated by 6 different sys-
tems), and 763 lines for ZH→EN (translated by 6
different systems).

We use checkpoints from each of the systems
we built to produce the low- and medium-quality
MT output. For ZH→EN and HE↔EN, all check-
points were selected from the baseline systems;
for EN→DE, they were selected from the baseline
system as well as the 50k, 200k, and 400k pseudo-
low-resource systems. These checkpoints were
selected to cover a range of BLEU scores from less
than 1 to between 20 and 30 (shown in Appendix E,
Tables 11 and 12; we assign the selected systems
the letters A through F, or through L in the case of
EN→DE, with A being the lowest quality system
in all cases),2 and were then spot-checked manually
to confirm that they did generally appear to repre-
sent incremental (but noticeable) improvements in
quality. We note that we did not perform a full or
extensive manual evaluation, and as such cannot

2Computed with sacreBLEU (Post, 2018) with signature:
nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|
version:2.3.1 For HE↔EN, the systems were selected
based on BLEU scores computed with refA as the reference,
as refB had not yet been released. The range of BLEU scores
remains similar, and we present all other HE↔EN results
based on scores with refB.

make claims of statistically significant human judg-
ment differences between the checkpoints. Another
potential limitation of this choice to select check-
points is that they may be more similar to one an-
other than separately-trained systems would be (cf.
the benefits of ensembling diverse sets of systems
or the potential minor drawbacks of ensembling
checkpoints rather than separately trained models
in Farajian et al. (2016); Sennrich et al. (2016), i.a.).
Nevertheless, we expect this should provide some
coverage of low- to mid-quality MT for scoring by
various metrics.

4 General MT Submissions

Our challenge set has aimed to cover the range of
low-quality MT systems, but to obtain a fuller pic-
ture, we also include the metric scores assigned
to the systems submitted to the WMT2023 Gen-
eral MT Task (Kocmi et al., 2023) in our analy-
sis. For these systems, we have human annotation
scores in the form of multidimensional quality met-
rics (MQM; Burchardt, 2013) scores for EN→DE,
HE→EN, and ZH→EN.

5 Metrics

There are dozens of metrics submitted by the task
organizers and participants in WMT23 Metrics
shared task. Under the time and space limitations,
we only examine the baseline metrics submitted by
the task organizers and the primary metrics submit-
ted by the participants. Due to the random shuffling
of items in the challenge sets before their delivery
to the scorers, we can only examine metrics that
produce scores at the segment level, as the system-
level scores returned do not correspond to the un-
derlying systems in our datasets. We describe the
metrics included in this work in Appendix F.

6 Analysis

We are interested in metric performance and char-
acteristics at both the segment level and the system
level. In the case of EN→DE, the segments are
paragraphs, while in all other cases they are typi-
cally sentences. For metrics that use the reference,
HE↔EN are scored against refB (a higher-quality
reference translation than refA), while EN→DE
and ZH→EN are scored against refA.

For EN→DE, HE→EN, and ZH→EN, we have
access to human scores for all submitted WMT
MT systems (but not for the challenge set systems).
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These take the form of MQM scores over a con-
sistent subset of the test set. For the remainder of
this work unless otherwise noted, in order to make
appropriate comparisons between metric scores on
the challenge set, metric scores on the submitted
WMT MT systems, and the human annotations, we
restrict our analysis to only those segments that are
in the news domain and that correspond to the set
for which we have human annotations (104 para-
graphs for EN→DE, 619 segments we use all 516
segments of the test set data that are in the news
domain because we do not have any human annota-
tions).

6.1 Segment Level

Since we only have human annotations for the
WMT MT submissions and not our challenge set,
we must be cautious in the conclusions that we
draw about metric performance from the scores
they assign to segments. However, we can observe
that different metrics exhibit different characteris-
tics, even as they score an identical set of segments
over an identical set of systems.

6.1.1 Distributions of Scores
As we see in the histograms along the diagonal
of Figure 1, showing a subset of the baseline and
submitted metrics, different metrics exhibit very
different score distributions. This can also be seen
in Figures 3, 4, 5, and 6 in Appendix G. Some
show a somewhat bimodal distribution of scores,
some are closer to normally distributed, and there
are a number of metrics whose score distributions
do not fall into either of those patterns. Addition-
ally, they differ in whether they exhibit a strong
separation between the segments produced by the
low-quality systems from our challenge set and the
segments produced by the WMT submissions or
whether they assign a range of low to high scores
to most systems (i.e., having clear overlap in score
range across all systems). While we cannot con-
clude that any of these metrics is more accurate,
we can note that their varied characteristics suggest
that they may be measuring different things and/or
that different metrics may have different strengths
and weaknesses across the translation quality land-
scape.

There are also metrics that use an approxima-
tion of a discrete score space, such as GEMBA-
MQM. This particular metric also scores nearly
all segments produced by our low-quality sys-
tems as the lowest available score, particularly

for EN→DE, meaning it would not be a suitable
metric to distinguish between low-to-mid quality
(e.g., low-resource) translation systems. XCOMET-
Ensemble assigns a wider range of scores to the
low-quality segments, but the range and distribu-
tion of those scores is fairly consistent across the
low-quality systems in our challenge set, meaning
that it also struggles to distinguish between system
quality levels at the lower end, albeit for a different
reason. We can also see this when we examine
system-level scores.

6.1.2 Universal Translations and Universal
Scores

In Yan et al. (2023), the authors observe what they
term “universal translations”: target language out-
put that receives high scores regardless of the refer-
ence to which they are compared. Here, we observe
what one might consider to be “universal scores”
instead. Some metrics, like Calibri-COMET22,
use a wide range of scores in general, but have a
very small subset of scores that appear a very large
number of times. For the set of annotated news
segments across all challenge set and WMT MT
systems for EN→DE, 1673 unique scores are as-
signed to segments. The vast majority occur only
once, but there are two non-minimum/maximum
scores that occur 210 and 206 times, respectively
(the score zero, i.e. the maximum score for perfect
translation in this case, also appears 206 times). In
contrast, COMET assigns 2446 unique scores over
the same subset of segments, with the most frequent
of those scores occurring 7 times. We note that
Calibri-COMET22 (and Calibri-COMET22-QE)
exhibit this frequently-appearing-score characteris-
tic across the different language pairs, though the
number and exact value of the extremely frequent
scores differs across language pairs. Importantly,
this is not explainable by the data itself: other met-
rics assign a wide variety of scores to the same
segments that receive these particularly common
scores, which makes the common scores visible in
the Calibri-COMET22 column as the apparent ver-
tical lines (most visible in comparison to COMET).
As is evident from both the histogram and the scat-
terplots, these common scores are most frequently
assigned to the segments in our challenge set, to
the extent that this unexpected characteristic is not
clearly visible when the plot is restricted to only the
WMT MT submissions rather than including the
challenge set (see Figure 10). This highlights the
importance of performing evaluation over a wide
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Figure 1: A subset of the metrics (and MQM scores) for EN→DE. The diagonal entries show stacked histograms of
segment scores across the challenge set (cool colours/bottom) and submitted WMT systems (warm colours/top).
The off-diagonal entries are scatterplots where each point is a single segment positioned according to the score
assigned to it by row and column metrics; each point is coloured according to the MT system that produced it.



781

range of MT quality, in order to discover unex-
pected issues like this prior to applying the metrics
to low-resource or otherwise low-quality MT.

The eBLEU metric exhibits a slightly more dis-
persed version of this, where a large number of
segments receive scores in a fairly narrow band
relative to the metric’s overall score distributions.
However, in the case of eBLEU, this is not specific
to the challenge set data, but is also observed in the
WMT MT data.

6.2 System Level

To analyze system-level scores, we produce them
as an average over all of the segment-level scores in
the restricted test set (news domain segments in the
set of segments for which WMT MT systems were
human-annotated) for a given MT system.3 These
system-level scores can also be used in order to
gain a better understanding of the overall range of
a metric’s scores, as well as what kind of scores are
assigned to very low quality machine translation
(e.g., the A and B systems from the challenge set).

In Figure 2 (as well as Figures 7, 8, and 9 in Ap-
pendix G), we observe that metrics show different
patterns of scores at the system level. We observe
that some metrics exhibit unexpected character-
istics on the low-quality data, such as MaTESe,
which ranks some of the low-quality systems in
reverse order.4

We do not have MQM scores for any of the data
in the challenge set, which means that we do not
know how much of a gap in quality there is be-
tween our best low-quality system and the lowest-
performing MT systems submitted to WMT. How-
ever, we can observe that metrics differ widely in
their estimates of the gap; embed_llama, for exam-
ple, shows error bar overlap between the highest
performing system from our challenge set and the
lowest-scored system from the submissions, while
GEMBA-MQM shows a very large gap between
the two groups of systems,5 with many of the other
metrics falling between these extremes.

Similarly, again examining characteristics with-
out making claims about metric performance, we

3This includes the baseline BLEU.
4Though we do not have extensive human evaluation, we

are confident that, e.g., system E should not be ranked below
system A.

5For EN→DE, in Figure 7, the Calibri-COMET22 metrics
both find several of the highest performing systems from our
challenge set to be better than several of the submitted systems,
while most other metrics rank the challenge set systems below
the submitted systems.

notice variety amongst the metrics in terms of the
range of scores they assigned to each group of sys-
tems, as seen in the slope of the system scores. In
some cases, there are quite similar slopes (e.g., em-
bed_llama), while in other cases there is a steep
slope for the challenge set as compared to the WMT
MT systems (e.g., BERTScore or COMET) mean-
ing that the challenge set covers a wide range of
(lower) scores while the WMT MT set covers a
smaller range of higher scores, and finally some
systems where the slopes are similar but both less
steep (e.g., Calibri-COMET22-QE and GEMBA-
MQM) and each set of systems covers a small
range of scores with a gap in between. Without
MQM scores for the challenge set, we do not know
whether one of these patterns is indicative of a met-
ric that more closely resembles human annotations
or not (i.e., we do not know whether the challenge
set covers a wider range of quality than the WMT
MT systems, which would support metrics having
a steeper slope/wider range in the scores assigned
to it).

We also note some variety across language pairs.
The reversal of scores seen in MaTESe is less ob-
vious in the EN→DE data, though that may be
related to greater overlap in the EN→DE challenge
set data quality.

In future work, obtaining MQM scores for one
or more of the systems in our challenge set would
permit us to draw conclusions about metric perfor-
mance in these areas (i.e., about whether there is
indeed quality overlap between the two sets, and
what appropriate ranges of scores might be for each
of the sets).

All of these observations about variation in met-
ric characteristics raise an important issue in the
evaluation and adoption of new metrics: since their
correlation with human rankings is often demon-
strated on the high-quality MT output being scored
at WMT, it is not necessarily appropriate to use
them for the evaluation of low-resource or lower-
quality MT output without additional study.

6.3 Additional Discussion

We briefly mention two other items of note from
our exploration of the data.

Outside of the set of data for which there are
human annotations (i.e., not appearing in our fig-
ures), for HE→EN there are 14 news domain seg-
ments for which the ZengHuiMT system output
an empty string. Different metrics handle this in
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Figure 2: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05)
for HE→EN across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). Our
challenge set systems are ordered from left to right with BLEU scores, while the submitted WMT systems are
ordered by MQM score on the news domain.
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Metric Score Range
BERTscore 0.000 (0.000, 1.000)
BLEU 0.000 (0.000, 100.000)
BLEURT-20 0.055 (0.000, 1.030)
Calibri-COMET22 0.328 (0.000, 0.990)
Calibri-COMET22-QE 0.083 (0.000, 1.000)
chrF 0.000 (0.000, 100.000)
COMET* 0.796 (0.287, 0.995)
CometKiwi* 0.647 (0.261, 0.902)
cometoid22-wmt22 0.597 (0.268, 0.994)
eBLEU 0.000 (0.000, 1.000)
embed_llama 0.510 (0.040, 1.000)
GEMBA-MQM -25.000 (-25.000, 0.000)
KG-BERTScore* 0.682 (0.285, 0.886)
MaTESe 0.000 (-25.000, 0.000)
mbr-metricx-qe 0.027 (-0.004, 0.998)
MEE4 0.000 (0.000, 1.000)
MetricX-23* -25.597 (-25.618, 0.198)
MetricX-23-QE* -24.546 (-24.557, 0.848)
mre-score-labse-regular* 0.772 (0.266, 0.965)
MS-COMET-QE-22* 59.243 (1.641, 94.075)
prismRef -5.256 (-8.685, -0.077)
prismSrc -6.829 (-10.027, -0.111)
spBLEU 0.000 (0.000, 100.000)
XCOMET-Ensemble* 0.917 (0.291, 0.994)
XCOMET-QE-Ensemble* 0.899 (0.290, 0.998)
XLsim 0.911 (0.569, 1.000)
YiSi-1 0.000 (0.000, 1.000)

Table 1: Average metric scores assigned to empty strings
in the HE→EN news data, shown with the full range of
metric scores assigned to the news data. Metrics with
asterisks by their name did not assign the same scores to
all the empty strings, though the differences were quite
small.

different ways; some assign a score of 0 (or the
metric’s lower bound score), while others assigned
relatively high scores due to the fact that the source
and reference were very short (each source and
reference consisted only of a single period). Ta-
ble 1 shows the scores assigned by metrics to these
empty strings as well as the range of scores over the
full HE→EN news data (including segments that
were not human-annotated, as the empty strings
were also not included for human annotation).

We also observe two examples of systems that
receive noticeably lower scores from a number of
metrics than would be expected based on their hu-
man ranking: NLLB_Greedy (EN→DE, Figure 3)
and Samsung_Research_Philippines (HE→EN,
Figure 5). We leave this as an area for future inves-
tigation.

7 Conclusions

This challenge set expands the range of system
quality scored by metrics at the shared task. This
expanded range of MT quality reveals interesting
characteristics and limitations of some new metrics

when applied to a broader range of systems. The
smaller variations in segment-level scores given by
some metrics at the low end of quality could indi-
cate that these metrics struggle to discriminate low-
quality MT systems. This is further shown by the
observation that some metrics rank the low-quality
systems in reverse order at the system level. We
have discovered a “universal score" phenomenon
for some metrics, where a small subset of non-
minimum/maximum distinct scores are assigned to
a variety of translation output. This characteristic
was not visible in the high-quality MT output alone,
highlighting the importance of this type of testing.
We also observe diverse behaviors from different
metrics on empty string translation.

Our challenge set serves as a complement to
the standard correlation-based analyses and also
provides useful information to researchers who are
considering using these metrics in low-resource or
low-quality domains. We recommend that metric
researchers check their metrics’ performance on a
wider landscape of translation quality or be clear
about the limitations of their metrics’ testing.

Limitations

A major limitation of this work is our choice to
select low-quality systems on the basis of BLEU
scores, which was done for reasons of time and cost.
We attempted to mitigate this by spot-checking to
confirm that we saw noticeable differences between
various pairs of low-quality systems, but a more
thorough human annotation would be beneficial.
We are also limited in the set of languages we have
explored, using only four language pairs, as well
as the limited news domain.
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A Corpora Sizes

Corpora are from WMT23 (Kocmi et al., 2023) and
WMT17 (Bojar et al., 2017a).

A.1 EN→DE

From the download table at EMNLP 2023: General
Machine Translation, we retrieved all EN→DE cor-
pora. The train corpus is composed of airbaltic,
czechtourism, ecb2017, EESC2017, EMA2016,
rapid2016, europarl-v10, news-commentary-v18,
WikiMatrix.v1.de-en.langid and wikititles-v3. We
chose newstest2020 as our validation. Corpora
statistics are described in Table 2.

Name # lines # de words # en words
train 14,227,278 234,635,104 246,351,534

validation 1418 45,855 44,018

Table 2: Corpora sizes for EN→DE, computed on raw
text (not tokenized) using wc.

A.2 HE↔EN

From the instructions of EMNLP 2023: General
Machine Translation, we retrieved all HE→EN
corpora.6 Then, using wmt23-heen/train.{heb,eng}
and WikiMatrix.en-he, we sampled sentence pairs
for the validation and test sets and the remaining
pairs were used for train making sure that all three
are mutually exclusive. Corpora statistics are de-
scribed in Table 3.

Name # lines # en words # he words
train 2,227,830 38,307,579 30,943,929

validation 2000 20,459 16,620

Table 3: Corpora sizes for EN→HE, computed on raw
text (not tokenized) using wc.

A.3 ZH→EN

We used corpora from WMT2017.7 train
is composed of all 20 Books, casia2015,
casict2015, casict-A, casict-B, datum, NEU,

6mtdata get-recipe -ri wmt23-heen -o wmt23-heen
7https://www.statmt.org/wmt17/

translation-task.html

news-commentary-v18.en-zh, WikiMatrix.v1.en-
zh.langid and wikititles-v3. We chose newstest2020
as our validation. Corpora statistics are described
in Table 4.

Name # lines # en words # zh words
train 12,995,613 218,659,998 43,676,661

validation 2000 65,561 3716

Table 4: Corpora sizes for ZH→EN, computed on raw
text (not tokenized) using wc.

B Subword Segmentation

After some light normalization consisting of con-
verting non-breaking hyphen, normalizing spaces,
replacing control characters with spaces and col-
lapsing multiple spaces,8 we trained a 32k to-
kens, bilingual sentencepiece unigram subtokenizer
using HuggingFace’s tokenizers (Moi and Patry,
2022) for each language pair. The corpora used for
training the subword model were:

• EN→HE uses all of wmt23-
heen/train.{eng,eng}

• EN→DE uses our concatenated train

• ZH→EN uses our concatenated train

C System Descriptions

For all systems, we used Sockeye-3.1.31 (Hieber
et al., 2022), commit 13c63be5 with PyTorch-
1.12.1 (Paszke et al., 2019). Training was per-
formed on 4 Tesla V100-SXM2-32GB GPUs for
EN→DE and ZH→EN and 4 Tesla V100-SXM2-
16GB GPUs for EN→HE and HE→EN. Training
times are shown in Table 5.

Name Time (h)
ende 6 - 35
enhe 10.3
heen 6.5
zhen 83.5

Table 5: Training times in hours.

Table 6 describes the differences with Sockeye’s
default parameters. Note that we kept all interme-
diate checkpoints (from which we later select the
outputs used for the challenge set) and used the
entire validation during checkpoint evaluation.

8https://github.com/nrc-cnrc/
PortageTextProcessing/blob/main/bin/
clean-utf8-text.pl

https://openreview.net/forum?id=SkeHuCVFDr
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Name Value

amp True
grading clipping type abs
max sequence length 200:200

batch type max-word
checkpoint interval 10
initial learning rate 0.06325

learning rate scheduler type inv-sqrt-decay
learning rate warmup 4000

max checkpoints 110
max epochs 1000

max num checkpoint not improved 32
optimizer Adam

optimizer Betas 0.9, 0.98
optimized metric BLEU

update interval 10
attention heads 16:16

shared vocabulary True
transformer FFN 4096:4096

transformer model size 1024:1024
weight tying True

Table 6: Differences from Sockeye’s default parameters.

On top of the changes from Table 6, for
EN→HE and HE→EN, we lowered the batch
size to 6144 and changed max checkpoints to 330.

For all language pairs, we have trained a baseline
system using the entire train corpus. Additionally,
for EN→DE, we also trained systems that use a
uniformly random subsample of train namely, 50k,
200k and 400k (the pseudo-low-resource systems).

D Pseudo-Low-Resource Corpora

Due to human error in the sampling code, the
pseudo-low-resource training data used for the
EN→DE systems trained on 50k, 200k, and 400k—
intended to be a random sample from the full train-
ing data—instead primarily consists of data from
the first four corpora shown in Table 7. Table 8
shows the small number of differences between
these subsampled corpora and simply selecting the
first n lines of the full training corpus. The main
consequence of this is that these systems may be
skewed towards particular domains.

E Checkpoints in Challenge Set

In Table 9 we see the checkpoint IDs for systems
included in the challenge set for HE↔EN and
ZH→EN. Table 10 shows the same for EN→DE.
The corresponding BLEU scores are shown in Ta-
bles 11 and 12, respectively.

Corpus Name # Sentences
airbaltic 839
czechtourism 6758
ecb2017 4147
EESC2017 2,857,850
EMA2016 347,631
rapid2016 1,030,808
europarl-v10 828,473
news-commentary-v18 203,744
WikiMatrix.v1 2,579,106
wikititles 1,474,203
total 14,227,278

Table 7: (EN→DE) Sub-corpora sizes in the order they
were merged to create the final sampled train.

Sample Size # Differences # lines EESC2017
50k 282 38,256
200k 70 188,256
400k 34 388,256

Table 8: EN→DE; Number of sentences that are differ-
ent from the original train’s head and how many sen-
tences from EESC2017 that were used.

System EN→HE HE→EN ZH→EN
A 68 58 61
B 98 87 91
C 115 102 115
D 135 117 139
E 171 140 222
F 392 219 480

Table 9: Checkpoint IDs for systems included in chal-
lenge set (HE↔EN and ZH→EN).

System EN→DE
A 54
B (50k) 1
C 79
D (50k) 7
E (200k) 2
F 91
G (200k) 27
H (400k) 4
I (400k) 43
J 102
K 129
L 313

Table 10: Checkpoint IDs for systems included in chal-
lenge set (EN→DE); parenthetical numbers indicate one
of the pseudo-low-resource systems rather than the full
training data system.
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System EN→HE HE→EN ZH→EN
A 0.6 0.7 0.9
B 3.1 4.3 5.0
C 7.2 7.3 9.3
D 11.4 11.4 13.1
E 16.6 16.0 18.5
F 26.2 23.9 23.2

Table 11: BLEU scores for systems included in chal-
lenge set over the full news data in the challenge set
(HE↔EN computed with refB).

System EN→DE
A 0.7
B (50k) 2.5
C 4.2
D (50k) 4.7
E (200k) 4.7
F 8.9
G (200k) 9.5
H (400k) 10.4
I (400k) 12.0
J 12.8
K 18.7
L 29.9

Table 12: BLEU scores for systems included in chal-
lenge set (EN→DE) over the full news data in the chal-
lenge set; parenthetical numbers indicate one of the
pseudo-low-resource systems rather than the full train-
ing data system.

F Metrics

Table 13 shows a summary of the human annota-
tions and metrics included in this work and the
translation directions they participated in. In the
following, we briefly describe the key characteristic
of each metric.

F.1 Baseline Metrics

BLEU (Papineni et al., 2002) is the (clipped) preci-
sion of word n-grams between the MT output and
its reference weighted by a brevity penalty.

spBLEU (Team et al., 2022) is BLEU computed
with subword tokenization done by the Flores-
200 Sentencepiece Model (Kudo and Richardson,
2018).

chrF (Popović, 2015) uses character n-grams to
compare the MT output with the reference and it is
a balance of precision and recall.

BERTScore (Zhang et al., 2020) uses cosine
similarity of contextual embeddings from pre-

trained transformers to compute F-scores of sen-
tence level similarity.

BLEURT-20 (Sellam et al., 2020) is fine-tuning
RemBERT to predict direct assessment (DA; Gra-
ham et al., 2013, 2014, 2016) scores for a MT-
reference pair.

COMET (COMET-22) (Rei et al., 2022) is an
ensemble of two models: COMET-20 and a mul-
titask model jointly predicting sentence-level mul-
tidimensional quality metrics (MQM) and word-
level translation quality annotation, where COMET-
20 is fine-tuning XLM-R to predict DA scores for a
MT-source-reference tuple. CometKiwi is a qual-
ity estimation metric that is similar to COMET,
except it scores the MT output against the source,
instead of the reference translation.

MS-COMET-QE-22 (Kocmi et al., 2022) is a
COMET-QE-20 based quality estimation metric
trained on a larger and filtered set of human judge-
ments, covering 113 languages and 15 domains.

prismRef (Thompson and Post, 2020) uses a
neural paraphrase model to score the MT output
against the reference translation. prismSrc is the
quality estimation version, which scores the MT
output against the source, instead of the reference
translation.

YiSi-1 (Lo, 2019) measures the semantic simi-
larity between the MT output and reference by the
IDF-weighted cosine similarity of contextual em-
beddings extracted from pretrained language mod-
els, e.g. RoBERTa, CamemBERT, XLM-R, etc.,
depending on the target language in evaluation.

F.2 Primary submissions

Calibri-COMET22 uses isotonic regression on the
COMET-22 output scores to predict the fraction
of translations with no error produced by the MT
system. Calibri-COMET22-QE is a quality esti-
mation metric that is similar to Calibri-COMET22,
where it uses COMETKiwi as base model.

cometoid22-wmt22 (Gowda et al., 2023) is a
quality estimation metric that uses COMET-22 as a
teacher metric and trains a student model to predict
the teacher scores without using reference transla-
tion.

eBLEU (ElNokrashy and Kocmi, 2023) uses
non-contextual word embeddings and relative
meaning diffusion tensors to approximate the token
similarity in the MT output and reference and com-
putes translation quality scores similar to BLEU.

embed_llama (DREANO et al., 2023) is the
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Metric Name EN→DE EN→HE HE→EN ZH→EN Reference-based
Human annotation
MQM ✓ ✓ ✓

Metrics
BERTScore ✓ ✓ ✓ ✓ ✓
BLEU ✓ ✓ ✓ ✓ ✓
BLEURT-20 ✓ ✓ ✓ ✓ ✓
Calibri-COMET22 ✓ ✓ ✓ ✓ ✓
Calibri-COMET22-QE ✓ ✓ ✓ ✓
chrF ✓ ✓ ✓ ✓ ✓
COMET ✓ ✓ ✓ ✓ ✓
CometKiwi ✓ ✓ ✓ ✓
cometoid22-wmt22 ✓ ✓ ✓ ✓
eBLEU ✓ ✓ ✓ ✓ ✓
embed_llama ✓ ✓ ✓ ✓ ✓
GEMBA-MQM ✓ ✓ ✓ ✓
KG-BERTScore ✓ ✓ ✓ ✓
MaTESe ✓ ✓ ✓ ✓
mbr-metricx-qe ✓ ✓ ✓
MEE4 ✓ ✓ ✓ ✓ ✓
MetricX-23 ✓ ✓ ✓ ✓ ✓
MetricX-23-QE ✓ ✓ ✓ ✓
mre-score-labse-regular ✓ ✓ ✓ ✓ ✓
MS-COMET-QE-22 ✓ ✓ ✓ ✓
prismRef ✓ ✓ ✓ ✓ ✓
prismSrc ✓ ✓ ✓ ✓
spBLEU (flores-200) ✓ ✓ ✓ ✓ ✓
XCOMET-Ensemble ✓ ✓ ✓ ✓ ✓
XCOMET-QE-Ensemble ✓ ✓ ✓ ✓
XLsim ✓ ✓ ✓ ✓ ✓
YiSi-1 ✓ ✓ ✓ ✓ ✓

Table 13: Human annotation and metrics included in this work, with their coverage of language pairs. Metrics that
are not marked as reference-based are reference-free (a.k.a quality estimation) metrics.
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cosine similarity of the MT output and reference
based on Llama 2 sentence embeddings.

GEMBA-MQM (Kocmi and Federmann, 2023)
uses three-shot prompting on the GPT-4 model with
a single prompt and no language specific example.

KG-BERTScore (Wu et al., 2023) is the linear
combination of KGScore and COMET-QE based
BERTScore, where KGScore is incorporating mul-
tilingual knowledge graph into BERTScore.

MaTESe (Perrella et al., 2022) trains Deberta
(for English) and InfoXLM (for German and Rus-
sian) encoders to identify MQM error spans and
severity using WMT22 Metrics shared task MQM
data.

mbr-metricx-qe (Naskar et al., 2023) uses the
underlying technique of minimum bayes risks
(MBR) decoding to develop a quality estimation
metric. It uses an evaluator machine translation
system and a reference-based utility metric (specif-
ically BLEURT and MetricX) to calculate a quality
estimation score of a model.

MEE4 (Mukherjee and Shrivastava, 2023) is
an unsupervised, reference-based metric that is a
weighted combination of syntactic similarity based
on a modified BLEU score, lexical, morphological
and semantic similarity using unigram matching
and contextual similarity with sentence similarity
scores from multilingual BERT.

MetricX-23 (Juraska et al., 2023) is a regression
metric that finetunes the mT5-XXL checkpoint us-
ing direct assessment data from 2015-2020 and
MQM data from 2020 to 2021 as well as synthetic
data. MetricX-23-QE is the quality estimation
variant that uses the source, instead of the refer-
ence, for scoring.

mre-labse-regular (Viskov et al., 2023) is a
trained metric that is based on the encoder part
of mT0-large model and contextual embeddings
from LaBSE. It concatenates the source, reference
and MT output as input.

XCOMET-Ensemble (Guerreiro et al., 2023) is
an ensemble of a XCOMET-XL and two XCOMET-
XXL checkpoints that result from the different
training stages. XCOMET is similar to COMET
but is trained for both regression and sequence tag-
ging for identifying MQM error spans, where the
intent is to make it a more interpretable learnt met-
ric. XCOMET-QE-Ensemble is the quality esti-
mation version.

XLsim (Mukherjee and Shrivastava, 2023) is a
supervised reference-based metric that regresses

on human scores provided by WMT (2017-2022)
based on XLM-RoBERTa using a Siamese network
architecture with CosineSimilarityLoss.

G Additional Figures

Here we show additional figures, including the full
set of histograms for EN→DE (Figure 3), EN→HE
(Figure 4), HE→EN (Figure 5) and ZH→EN (Fig-
ure 6) as well as the system scores for EN→DE
(Figure 7), EN→HE (Figure 8), and ZH→EN (Fig-
ure 9).
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Figure 3: Stacked histograms (one subplot per metric) of segment scores for EN→DE across the challenge set
(cool colours/bottom of the stacked histograms) and submitted WMT systems (warm colours/top of the stacked
histograms).
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Figure 4: Stacked histograms of segment scores for EN→HE across the challenge set (cool colours/bottom) and
submitted WMT systems (warm colours/top).
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Figure 5: Stacked histograms of segment scores for HE→EN across the challenge set (cool colours/bottom) and
submitted WMT systems (warm colours/top).
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Figure 6: Stacked histograms of segment scores for ZH→EN across the challenge set (cool colours/bottom) and
submitted WMT systems (warm colours/top).



796

Figure 7: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05)
for EN→DE across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). Our
challenge set systems are ordered from left to right with BLEU scores, while the submitted WMT systems are
ordered by MQM score on the news domain.
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Figure 8: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05) for
EN→HE across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). All systems
are ordered from left to right by BLEU scores (as direct assessment scores were not yet available for EN→HE).
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Figure 9: System average scores (with error bars computed via bootstrap resampling 1000 times for p < 0.05)
for ZH→EN across the challenge set (cool colours/left) and submitted WMT systems (warm colours/right). Our
challenge set systems are ordered from left to right with BLEU scores, while the submitted WMT systems are
ordered by MQM score on the news domain.
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Figure 10: A subset of the metrics (and MQM scores) for EN→DE, showing only the high-quality WMT MT
system submissions. The diagonal entries show stacked histograms of segment scores. The off-diagonal entries are
scatterplots where each point is a single segment positioned according to the score assigned to it by row and column
metrics; each point is coloured according to the MT system that produced it.


