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Abstract

We present the joint contribution of Unbabel
and Instituto Superior Técnico to the WMT
2023 Shared Task on Quality Estimation (QE).
Our team participated on all tasks: sentence-
and word-level quality prediction (task 1) and
fine-grained error span detection (task 2). For
all tasks, we build on the COMETKIWI-22
model (Rei et al., 2022b). Our multilingual ap-
proaches are ranked first for all tasks, reaching
state-of-the-art performance for quality estima-
tion at word-, span- and sentence-level granular-
ity. Compared to the previous state-of-the-art,
COMETKIWI-22, we show large improvements
in correlation with human judgements (up to
10 Spearman points). Moreover, we surpass
the second-best multilingual submission to the
shared-task with up to 3.8 absolute points.

1 Introduction

Quality Estimation (QE) is the task of automati-
cally assigning a quality score to a machine trans-
lation output without depending on reference trans-
lations (Specia et al., 2018). This paper details the
collaborative effort of Unbabel and Instituto Supe-
rior Técnico (IST) in the WMT23 Quality Estima-
tion shared task, which encompassed two primary
tasks: (i) sentence- and word-level quality predic-
tion and (ii) fine-grained error span detection.

As of last year, some language pairs in the test
set were absent from the training data. To address
this, following a similar approach to the previous
year, our systems were developed to achieve good
multilingual generalization and to accommodate
previously unseen languages. To achieve this, we
start by leveraging the direct assessments (DA) la-
beled data obtained from the WMT Metrics shared
task from 2017 to 2020, the MLQE-PE dataset
(Fomicheva et al., 2022), and the training data (DA)
specifically annotated for Indian languages in the
2023 shared task edition. In total, these datasets
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encompass close to 1M annotations covering 38
language pairs. We start by constructing generic
models using this corpus. These generic QE mod-
els were subsequently fine-tuned for this year’s
subtasks.

For Task 1 – sentence-level, we fine-tuned our
generic models exclusively with this year’s DA
data. The architecture of these models remains con-
sistent with our submission from the previous year,
but we employ XLM-R XL and XXL as pretrained
encoders (Conneau et al., 2020). For the word-level
quality prediction task, we follow the successful
approach of combining the sentence- and word-
level signals into one loss during the finetuning
step, which has yielded positive results in previ-
ous iterations (Rei et al., 2022b). For fine-grained
error span detection, we conducted experiments
exploring various approaches that build upon our
word-level and sentence-level strategies. In terms
of contrasting systems, we explored UnbabelQi1

and GPT-4 (OpenAI, 2023). For GPT-4, we used
a prompt designed to predict both the location and
severity of errors in each translation, akin to the ap-
proach used in AutoMQM (Fernandes et al., 2023).

Overall, our main contributions are: (i) we in-
troduce approaches for multilingual machine trans-
lation quality estimation that are consistently first-
ranked at word-, span-, and sentence-level gran-
ularity; (ii) we explore different approaches to
predict the span of problematic translations along
with their error severities (OK, MINOR, MAJOR);
(iii) we publicly release two of our best models for
research purposes (COMETKIWI -XL2 and -XXL3).
To the best of our knowledge, these are the largest
open-source QE models publicly released.

Our submitted systems attain the top multi-
lingual results in all tasks: For Task 1 sentence-

1https://qi.unbabel.com/
2https://huggingface.co/Unbabel/

wmt23-cometkiwi-da-xl
3https://huggingface.co/Unbabel/

wmt23-cometkiwi-da-xxl

ricardo.rei@unbabel.com
https://qi.unbabel.com/
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xl
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xxl
https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xxl
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level prediction, our multilingual system achieves
59.4 Spearman correlation points, surpassing the
second-best system by nearly 4 absolute points. For
word-level, our system achieves a 31.7 MCC score,
outperforming the second-best system by almost
2 absolute MCC points. For error span prediction,
our multilingual system achieves a 22 F1.0 score,
beating the second-best system by more than 5 F1

points.

2 Overview of the shared-task

QE systems are designed according to the granular-
ity in which predictions are made (e.g., sentence-
or word-level QE). In sentence-level QE, the goal
is to predict a single quality score ŷ ∈ R given the
whole source and its translation as input. Word-
level QE works at a lower granularity level, with
the goal of predicting binary quality labels ŷi ∈
{OK, BAD} for all 1 ≤ i ≤ n machine-translated
words, indicating whether that word is a translation
error. In fine-grained error span detection, systems
are tasked with flagging which parts of the segment,
i.e., sequences of consecutive characters, contain
errors. If an error span is found, the system has
to point out its severity; in this shared task, an er-
ror span’s severity can be classified as MINOR or
MAJOR. We sometimes refer to the parts of the seg-
ment that do not belong to an error span as being
labelled as OK. We participated on all tasks of this
year’s shared-task. We specify the language pairs
and the released data below:

Task 1 – Sentence-level quality prediction:
Submissions for this task were evaluated
based on their correlation with Direct Assess-
ment (DA) annotations for five language pairs:
English→Marathi (en-mr), English→Hindi (en-hi),
English→Tamil (en-ta), English→Telugu (en-te),
and English→Gujarati (en-gu). Furthermore,
they were evaluated using Multidimensional
Quality Metrics (MQM) annotations for three
language pairs: English→German (en-de),
Chinese→English (zh-en), and English→Hebrew
(he-en). Training data was made available for all
language directions except for he-en.

Task 1 – Word-level quality prediction: Sub-
missions for this task underwent evaluation
based on tags inferred from post-editions for
English→Farsi (en-fa) and English→Marathi (en-
mr). Additionally, they were assessed using MQM
annotations for en-de, zh-en, and he-en. No addi-

[cls] target [sep] source [eos]

Pre-trained Encoder

Layer Pooling

[cls] Target Embeddings

Feed Forward Feed Forward

Sentence score
ŷ ∈ R

Word labels
ŷi ∈ YWL

Figure 1: Our model follows COMETKIWI for sentence-
level (left part) and word-level QE (right part). We
represent the output space of the word-level head by
YWL.

tional training or development data with word-level
tags were made available. To the best of our knowl-
edge, no word-level data is available for en-fa and
he-en.

Task 2 – Fine-grained error span detection:
submissions were evaluated on error spans obtained
via MQM annotations for 3 language pairs (en-de,
zh-en and he-en). No training nor development
data is available for he-en.

3 Implemented Systems

We largely follow the architecture of
COMETKIWI (Rei et al., 2022b) – see Fig-
ure 1 for an illustration. We concatenate the
machine translated sentence t = ⟨t1, ..., tn⟩ and
its source sentence counterpart s = ⟨s1, ..., sm⟩ to
serve as input to the encoder. This encoder then
produces hidden state matrices H0, ...,HL for
each layer 0 ≤ ℓ ≤ L, where Hℓ ∈ R(n+m)×d,
where ℓ = 0 corresponds to the embedding layer
and d is the hidden size. Following this, all hidden
states are fed to a scalar mix module (Peters et al.,
2018) that learns a weighted sum of the hidden
states of each layer of the encoder, producing a
sequence of aggregated hidden states Hmix as
follows:

Hmix = λ
L∑

ℓ=0

βℓHℓ. (1)

Here λ is a scalar trainable parameter, β ∈ △L

is given by β = sparsemax(ϕ) using a sparse
transformation (Martins and Astudillo, 2016), with
ϕ ∈ RL as learnable parameters, and where we
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denote by △L := {β ∈ RL : 1⊤β = 1,β ≥ 0}
the probability simplex.4

For sentence-level models, we use the hidden
state of the <cls> token as the sentence represen-
tation, which, in turn, is passed to a 2-layered feed-
forward module in order to get a sentence score pre-
diction ŷ ∈ R. For word-level and error span detec-
tion models, we first retrieve the hidden state vec-
tors associated with each each token in t, and then
pass them to a linear projection to get word-level
predictions ŷi ∈ YWL, ∀1≤i≤n. The output space of
the word-level predictions is different depending on
whether the models are constructed for word-level
quality prediction (YWL = {OK, BAD}), or error
span detection (YWL = {OK, MINOR, MAJOR}).

Pretrained multilingual encoders. Similarly
to (Rei et al., 2022b), we employ InfoXLM L (Chi
et al., 2021).5 Additionally, we experiment with
scaled-up multilingual encoders, including XLM-R
XL,6 and XLM-R XXL.7 InfoXLM L comprises
24 encoder blocks with 16 attention heads each,
totaling 550M parameters. XLM-R XL and XLM-
R XXL have 32 attention heads for each encoder
block, 36 and 48 encoder blocks and a total of 3.5B
and 10.7B parameters, respectively.

Generic models for all tasks. We create, for
each model size, a generic model that will then be
further adapted to each separate task. To train these
models, we use the collective corpora from 2017
to 2019 DA annotations of the WMT Translation
shared task, and the MLQE-PE corpus (Fomicheva
et al., 2022). We include the human annotations re-
spective to the language pairs of this year’s shared
task for 7 different language pairs: DA annotations
for en-mr, en-hi, en-ta, en-te, en-gu, and MQM an-
notations for en-de and zh-en. Overall, the generic
models are trained on sentence-level quality pre-
diction with over 940k samples with source, trans-
lation and quality score on 38 different language
pairs. When presented with multiple DA scores
for the same sentence pair, we used the z-score
of the DAs for training but we first normalize the
DAs between 0 and 1, where 1 represents a perfect

4As it has been shown in (Rei et al., 2022a) not all layers
are relevant and thus, using sparsemax we learn to ignore
layers that do not help in the task at hands.

5https://huggingface.co/microsoft/
infoxlm-large

6https://huggingface.co/facebook/
xlm-roberta-xl

7https://huggingface.co/facebook/
xlm-roberta-xxl

translation and 0 a random one.

Task adaptation. After having obtained the
generic models, we will train models for each sep-
arate stream of the shared-task, i.e., sentence-level,
word-level or error span prediction. To do so, we
consider the multi-task optimization from Rei et al.
(2022b) wherein sentence scores can be used along-
side supervision from word-level tags. Formally,

LSL(θ) =
1

2
(y − ŷ(θ))2 (2)

LWL(θ) = − 1

n

n∑
i=1

wyi log pθ(yi) (3)

L(θ) = λSLLSL(θ) + λWLLWL(θ), (4)

where w ∈ R|YWL| represents the class weights
given for the word-level tags,8 and λSL, λWL ∈ R+

are used to weigh the sentence and word-level
losses, respectively. Note that λSL = 1 and λWL =
0 yields a fully sentence-level model, whereas
λSL = 0 and λWL = 1 yields a word-level model.

Using unconstrained models. For error span de-
tection, we evaluate UnbabelQi, an Unbabel demo
QE system, alongside GPT4 (OpenAI, 2023). We
prompt GPT4 to produce an MQM annotation for
each source-target pair, based on five-shot exam-
ples which vary across language pairs but are con-
sistent within segments of the same language pair.
We also apply this system in Task 1, deriving a
sentence-level score from error spans, in alignment
with the MQM framework. This approach bears
similarity to AutoMQM (Fernandes et al., 2023).

3.1 Task 1: Quality prediction
After the pretraining phase, we further separately
adapt the generic models to the released DA and
MQM data for this year’s shared task.

3.1.1 Sentence-level quality prediction
Adaptation for Sentence-level. In order to tailor
our models to the language pairs featured in this
year’s shared task, we conducted full fine-tuning
until convergence on the released validation set.
This fine-tuning exclusively leveraged the recently
released Direct Assessment (DA) annotations for
this year’s task. This approach yields additional im-
provements for those languages. In the case of the
MQM language pairs, our preliminary experiments
revealed that attempting significant performance

8These parameters help control how much we penalize the
different granularities of word-level errors.

https://huggingface.co/microsoft/infoxlm-large
https://huggingface.co/microsoft/infoxlm-large
https://huggingface.co/facebook/xlm-roberta-xl
https://huggingface.co/facebook/xlm-roberta-xl
https://huggingface.co/facebook/xlm-roberta-xxl
https://huggingface.co/facebook/xlm-roberta-xxl
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improvements on the MQM data led to noteworthy
drops in correlations for the other language pairs
using DAs. Consequently, for the MQM language
pairs, we opted to employ the generic models as
they are.

Ensembling models. Similarly to Rei et al.
(2022b), we use Optuna (Akiba et al., 2019) to
assemble four models – two XL and two XXL –
into a single system. We do so by finding the op-
timal weights for each language pair among these
four multilingual models, and combining their pre-
dictions according to those weights. Notably, the
XXL models are generic models, whereas the two
XL checkpoints were further optimized with this
year’s shared task data. As expected, the XL mod-
els carry more weight for Indian languages, while
the XXL generic models were deemed more crucial
for MQM languages.

3.1.2 Word-level quality prediction
For the word-level QE tasks, we experimented with
both the multi-task setting and word-labels only.

Training word-level models. This year, no train-
ing or development data with word-level tags were
made available. As such, the training data for our
models consists of the training data used in Rei
et al. (2022b), combined with the development sets
from the 2022 WMT Shared Task. As the word-
level task was going to be tested in a zero-shot
scenario for two out of five language pairs (en-fa,
he-en), contrary to Rei et al. (2022b), we do not
prepend a language prefix to the beginning of the
source and target segments during training. More-
over, for the post-edit (PE) models, we removed
samples from two language pairs (ps-en and en-cs)
from the training data. We did so to assess, during
validation, the models’ capability to generalise in a
zero-shot scenario. For the MQM models, we used
all available annotations, including those in en-ru.

Ensembling models. For word-level we fol-
lowed a similar ensembling technique used for
sentence-level. Specifically, we combined multi-
ple systems trained with different hyperparameters,
encoder size and pre-training setups. In the case
of word-level predictions, we aggregate multiple
predictions into OK/BAD tags by following the
ensemble-tags procedure from Rei et al. (2022b).
In this approach, we combine the predicted tags
of each model: for every input segment, we get a
combined tag, α

∑
i∈Mwici, where ci is the tag

predicted by the model and α is the weight for the
BAD tag. We use Optuna to determine the optimal
weights wi for each model and the optimal BAD

weight α for each LP. In the final submission, we
combine six models (five PE models and one MQM
model). Five of these models use InfoXLM as the
encoder model, and one PE model uses XLM-R
XL.9 Refer to Table 2 for the test set results.

3.2 Task 2: Fine-grained error span detection

In this task, we investigated three distinct ap-
proaches. The first approach extends word-level
models by modifying their output predictions.
More precisely, it involves transforming consecu-
tively predicted BAD tags into character-level error
spans, rather than categorizing individual words
based on the first subword. To determine the er-
ror severities of these spans, we considered two
options: labeling all the subwords within the span
as either MINOR or MAJOR. Our best results were
achieved with the latter approach.

The second approach leverages XCOMET (Guer-
reiro et al., 2023) in conjunction with a pseudo-
reference obtained from DeepL or Google Trans-
late.10 Similar to our models from Task 1 word-
level, XCOMET is trained with a multitask objec-
tive. Additionally, XCOMET is simultaneously
optimized for both reference-free and reference-
based evaluation, following UNITE (Wan et al.,
2022). During inference, XCOMET can leverage
a reference translation to enhance error identifi-
cation. Since we employ a pseudo-reference that
may contain translation errors, we initially assess
the quality of the pseudo-reference using a generic
QE system from Task 1 (reference_score). For
all pseudo-references with a score below 0.5, we
run XCOMET with QE-only input. For pseudo-
references scoring above 0.5, the input weights for
XCOMET are determined as follows:

diff = 1− reference_score

src_weight = 2 · diff

ref_weight = (1− src_weight) · 0.4
uni_weight = (1− src_weight) · 0.6

Here, src_weight represents the weight as-
signed to the source-only input, ref_weight de-

9We found it hard to obtain performance boosts by scaling
up to XLM-R XL on the word-level task. As such, we did not
experiment with XLM-R XXL.

10We choose the best translation using the generic XXL
model from task 1.
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DA MQM

Encoder en-mr en-hi en-ta en-te en-gu en-de zh-en he-en† avg.

2nd place (Yan et al., 2023) 0.556
CometKiwi-22 (Rei et al., 2022b)

InfoXLM L 0.625 0.394 0.549 0.229 0.577 0.413 0.476 0.619 0.485

Generic models
InfoXLM L 0.661 0.505 0.641 0.282 0.661 0.422 0.448 0.610 0.529
XLM-R XL 0.664 0.536 0.607 0.335 0.637 0.422 0.469 0.624 0.537
XLM-R XXL 0.685 0.520 0.670 0.326 0.655 0.443 0.476 0.662 0.555

Further adapted models for sentence-level
XLM-R XL 0.684 0.583 0.682 0.386 0.683 0.434 0.441 0.696 0.574
XLM-R XXL 0.693 0.555 0.738 0.359 0.701 0.434 0.457 0.661 0.575

Final Ensemble
Ensemble 4x 0.702 0.598 0.739 0.389 0.714 0.448 0.493 0.668 0.594

GPT4-based model
GPT4-QE 0.379 0.212 0.146 0.174 0.297 0.442 0.412 0.488 0.319

Table 1: Results for sentence-level QE in terms of Spearman correlation. We represent zero-shot LPs with †.

notes the typical metric input (reference-only in-
put), and uni_weight represents a unified input
where the model receives all three sentences (trans-
lation, source, and reference). Notably, for pseudo-
references with a QE score of 1, we rely solely on
a reference-only input and the unified input. We
refer to this approach as xCOMET-PS-REF.

We also contrast the aforementioned approaches
with two unconstrained QE systems: UnbabelQi
and GPT-4, as mentioned in Section 3. We refer to
these approaches as UNBABELQI and GPT4-QE,
respectively.

4 Experimental Results

We present the results on the official test set for
each of the tasks for multiple model/data configura-
tions. Sentence-level submissions were evaluated
using the Spearman rank correlation. Pearson and
Kendall correlation were also used as secondary
metrics, but here we report only Spearman since
it was the primary metric used to rank systems.
word-level submission were evaluated using MCC,
F1-OK, and F1-BAD, but we report only MCC as
it was considered the main metric. Error span de-
tection was evaluated using F1 score in which the
positive labels are all the characters belonging to
erroneous spans. Furthermore, each true positive is
downweighted to half if the system failed to clas-
sify the error span’s severity (e.g., MINOR instead
of MAJOR). The submitted systems were indepen-
dently evaluated on in-domain and zero-shot LPs
for direct assessments and MQM.

4.1 Quality Estimation

Sentence-level. Results for sentence-level are
presented in Table 1. Results indicate that retrain-
ing the system from the previous year, specifically
COMETKIWI with InfoXLM, using data that en-
compasses this year’s DA, leads to significant im-
provements. Remarkably, this improvement in cor-
relations is achieved while maintaining the same
level of correlations for en-de (a high-resource lan-
guage pair for which both models share the same
data) and he-en, a language pair that both models
had not seen during training. Surprisingly, there
was a drop in correlations for zh-en even though
both models saw the same zh-en data. Neverthe-
less, the overall performance of the newly retrained
version improved by 4.4 Spearman points.

As anticipated, among the three backbone trans-
formers, the XXL model is the top performer, with
significant improvements across all language pairs
when compared to InfoXLM. Moreover, additional
finetuning on this year’s training data results in fur-
ther improvements for the Indian languages. No-
tably, concerning the MQM data, this supplemen-
tary finetuning step not only preserves performance
but sometimes even increases it. Similar to last
year, the ensemble of high-performing models once
again makes up our best submission.

Finally, despite performing well in Task 2,
GPT4-QE shows poor correlations at sentence-
level prediction with the exception of the en-de for
which GPT4-QE, although lagging behind the en-
semble approach, surpasses our individual models.
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Post-edit MQM

Method en-fa† en-mr en-de zh-en he-en† avg.

Baseline (Rei et al., 2022b) 0.293 0.287 0.179 0.225 0.275 0.226
2nd place (Yan et al., 2023) 0.298

Adapted models for word-level
PE model (InfoXLM L) 0.343 0.343 0.227 0.253 0.382 0.310
PE model (XLM-R XL) 0.325 0.344 0.255 0.197 0.306 0.285
MQM model (InfoXLM L) 0.296 0.252 0.215 0.269 0.334 0.273

Final Ensemble
Ensemble PE + MQM 0.345 0.347 0.246 0.302 0.402 0.317

Table 2: Results for word-level QE in terms of MCC for the post-edit and MQM LPs. The ensemble is composed by
multiple post-edit and MQM models. We represent zero-shot LPs with †.

Word-level. We report the best individual sys-
tems Table 2. Our best individual systems were
trained on top of the InfoXLM L generic model.
For PE models, we used multi-task objective in
Eq. 4, as we found that combining the sentence-
level and word-level loss was beneficial. However,
for MQM models, we trained word-level only mod-
els, by setting λSL = 0.0 and λWL = 1.0.

Interestingly, we found that PE models are very
competitive on MQM language pairs. For example,
the best overall performance for he-en was actually
obtained with a PE word-level model. This is also
reflected on the Optuna weights obtained for our
final ensemble, wherein the weights of the PE mod-
els are significantly higher than those of the MQM
models for all language pairs but en-de. In fact,
our final ensemble for en-zh and en-he consists
solely of PE models trained with different learning
rates, λSL, λWL and w. Further investigation on two
different vectors may lead to improved word-level
models: (i) balancing DA and MQM word-level
annotations, and (ii) appropriately leveraging the
larger capacity of scaled up encoder models.

Fine-grained error span detection. Results for
fine-grained error span detection are shown in Ta-
ble 3. Using a word-level model to obtain error
span predictions leads to reasonable performance,
comparable to our unconstrained submission, UN-
BABELQI, a model directly tasked with error span
detection. That said, xCOMET-PS-REF, an error
span detection model, surpassed both of the pre-
vious approaches. We attribute the improved per-
formance to this system being an ensemble of two
significantly larger models, and to the usage of a
pseudo-reference. We found the latter to be particu-
larly beneficial on he-en, a language pair for which
we had no training data.

Method en-de zh-en he-en† avg.

2nd place (Li et al., 2023) 0.165
Baseline 0.167 0.219 0.083 0.156

WORD-LEVEL 0.235 0.272 0.105 0.204
xCOMET-PS-REF 0.259 0.270 0.125 0.218
UNBABELQI 0.249 0.227 0.111 0.196
GPT4-QE 0.273 0.265 0.121 0.220

Table 3: Results for fine-grained error span detection
(Task 2). Evaluation metric is F1 score. We repre-
sent zero-shot LPs with †. The first two systems are
constrained while the other two are unconstrained sub-
missions.

The best approach in terms of average F1 was
GPT4-QE, mostly due to the improved perfor-
mance on en-de. While this is a promising finding
for LLM-based quality estimation systems, there
are limitations. First, obtaining a sentence-level
score from the error spans (as per the MQM frame-
work) leads to poor correlations with human judge-
ments derived from DA (see Table 1) and with low-
resource language-pairs like he-en. Second, despite
being useful in practice and leading to gains in F1,
it is hard to control GPT’s precision and recall. We
found that the number of examples included in the
prompt, their ordering, and the number of errors
within each example led to noticeable changes in
the system’s propensity to flag errors. Thirdly, run-
ning QE with a system such as GPT-4 is expensive
and slow even for a shared task exercise.

5 Final Remarks

We describe Unbabel and IST joint submission to
WMT23 QE shared task. Our approaches correlate
well with human judgements for all the three gran-
ularities of translation quality prediction, ranking
first in all multilingual tasks and surpassing the pre-
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vious state-of-the-art model, COMETKIWI-22, by
up to 10 Spearman correlation points. Overall, our
models follow the same architecture of last year’s
participation, COMETKIWI. However, this year we
leverage more data and larger encoder models. Our
best final systems are ensembles of different mod-
els trained on DA, post-edits or MQM scores that
complement each other. Interestingly, our best sys-
tems surpass GPT-4 by a large margin for sentence-
level translation quality prediction, and they are
comparable to GPT-4 at error span detection.
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