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Abstract
This paper describes the submission of the
OPUS-CAT project to the WMT 2023 termi-
nology shared task. We trained systems for
all three language pairs included in the task.
All systems were trained using the same train-
ing pipeline with identical methods. Support
for terminology was implemented by using the
currently popular method of annotating source
language terms in the training data with the
corresponding target language terms.

1 Introduction

OPUS-CAT (Nieminen, 2021) is a collection of
open source software consisting of a local neural
machine translation (NMT) engine and plugins for
computer-assisted translation (CAT) tools, such as
Trados, memoQ and OmegaT. OPUS-CAT enables
the use of NMT models trained in the OPUS-MT
project (Tiedemann and Thottingal, 2020) in profes-
sional translation. As OPUS-CAT is aimed at pro-
fessional translators, it is designed to be integrated
into normal translation workflows. Multilingual
term bases are one part of those workflows, so we
have decided to implement a functionality for utiliz-
ing term bases in OPUS-CAT. This paper describes
the methods used in OPUS-CAT for enforcing the
use of terminology in machine translation output
and the results of applying these methods to the
data provided in the shared task. We trained new
models for all three language pairs in the shared
task. The shared task results were not available at
the time of the submission of this paper.

2 Related work

Most published methods of constraining an NMT
model to generate terminologically correct transla-
tions fall into three categories.

2.1 Constrained decoding
Hokamp and Liu (2017); Hasler et al. (2018): The
beam search algorithm is modified to enforce the

generation of target terms for each source term
identified in the source sentence. The main advan-
tage of constrained decoding is that it can be used
with any model. The main disadvantages are slower
decoding speed, and quality degradation due to the
unconditional prioritizing of target terms, even in
inappropriate contexts (such as generating the tar-
get term multiple times in the translation).

2.2 Pass-through term placeholders

Michon et al. (2020): Source terms identified in
the source sentence are replaced by placeholders,
which the NMT model passes through to the trans-
lation. The placeholders generated in the trans-
lation are then replaced by corresponding target
terms. In order for the model to learn the correct
pass-through behaviour, the model has to be trained
with data that has been augmented with sentence
pairs containing aligned placeholders on source
and target sides. The main advantage of this ap-
proach is that the target terms are usually generated
in correct positions. The disadvantage is that the
information in the source term is discarded, which
may degrade the quality of the overall translation.
Generating morphological features for the target
term may also be difficult.

2.3 Injecting target terms as soft constraints

Dinu et al. (2019): Source terms identified in the
source sentence are annotated with target term in-
formation, and the NMT model uses these target
term annotations to generate the term translations.
Similar to the pass-through placeholder method,
the training data of the model needs to be aug-
mented with sentence pairs, where the source sen-
tence has been annotated with target term informa-
tion that also occurs in the target sentence. This
will induce the model to generate translations that
conform to the target term information present in
the source text. While the constrained decoding
and pass-through placeholder methods uncondition-
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ally enforce the use of the specified terminology
in the generated translation (they place hard con-
straints on the output), in this method terms are
soft constraints on the output: contextual factors
may cause the model to not use the specified term
in the translation. This is the desired behaviour,
since terms are often polysemous, and the speci-
fied term translation is usually only appropriate for
one sense of the term. For instance, a terminology
might specify a translation for the word file, but the
translation would only be relevant for the sense of
file meaning an individual file in a computer file
system, instead of e.g. a physical file, a wood file,
or the imperative of the verb to file.

The terminology support in OPUS-CAT is based
on the soft constraint method as it is the simplest
to implement and has performed best in previous
evaluations (Alam et al., 2021b).

3 Model training

The models were trained using a modified version
of Mozilla’s firefox-translations-training1, an end-
to-end pipeline for building NMT models, based
on the Snakemake workflow management system
(Mölder et al., 2021). The pipeline loads, pre-
processes, cleans and filters the training data, and
trains and evaluates the NMT models. For this
shared task, a terminology annotation workflow
has been added to the pipeline2.

3.1 Data

The models were trained using the data provided
for the constrained track of WMT23. Since suffi-
cient parallel data was available for each language
pair, we did not include any back-translated mono-
lingual data in the training corpus. This simplifies
and speeds up training, and from the point of view
of terminological correctness there does not appear
to be any obvious benefit to using back-translated
data, even though it would almost certainly increase
general output quality.

3.2 Data cleaning

The data was cleaned and filtered using the stan-
dard firefox-translations-training workflow, which
consists of monolingual cleaning of source and tar-
get corpora, followed by the filtering of parallel
sentences with Bicleaner or Bicleaner-AI. Data for

1https://github.com/mozilla/firefox-translations-training
2https://github.com/GreenNLP/firefox-translations-

training/tree/develop

en-cs and de-en were filtered with Bicleaner-AI,
while no parallel cleaning was performed for zh-en,
as no Bicleaner-AI model for zh-en was available
to the pipeline.

3.3 Terminology annotation
A part of the cleaned and filtered data
was annotated with artificial term informa-
tion (the annotation script is available from
https://github.com/TommiNieminen/soft-term-
constraints). First, artificial term data is generated
from the parallel data:

1. POS tagging and dependency parsing:
Stanza (Qi et al., 2020) was used to identify
the parts-of-speech (POS) and dependency re-
lations of the tokens in the source and target
sentences.

2. Chunking: The POS and dependency data
from step 1 was used to identify noun and
verb phrase chunks in the source and target
sentences.

3. Word alignment: The filtered parallel corpus
was aligned on word-level using FastAlign
(Dyer et al., 2013).

4. Chunk alignment: Source chunks that were
aligned with target chunks were identified
based on the word alignment from step 3.

The above method is identical to the one in
Bergmanis and Pinnis (2021) except for the ad-
dition of chunking.

As analyzing sentences with Stanza is quite slow,
only a small portion of the parallel data was ana-
lyzed (approximately one in ten sentences). The
noun and verb phrase chunks identified on the basis
of the analysis were saved and used to annotate the
data using two different annotation methods (see
table 2 for examples):

1. Append: The target language chunk was ap-
pended to the aligned source language chunk,
with the source and target chunks separated
with a special separator tag. A start tag was
also added before the start of the source chunk,
and an end tag was added after the end of the
target chunk.

2. Replace: The source language chunk was re-
placed with the aligned target language chunk.
The target chunk in the source sentence was
tagged with start and end tags.
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Language pair Raw Cleaned Annotated
Chinese to English 35,452,884 28,840,867 2,884,058
German to English 294,331,299 182,977,635 18,297,581
English to Czech 56,288,239 35,046,151 2,704,588

Table 1: Amount of parallel sentences available for each language pair. Base model is trained with cleaned data,
and the terminology models are fine-tuned with a combination of clean and annotated data or just annotated data
(-omit models).

Source This product is no longer available

Append This <term_start> product <term_end> produkt <trans_end> is no
longer available.

Replace This <term_start> produkt <term_end> is no longer available.

Table 2: Examples of append and replace annotation methods

These methods are identical to the ones in Dinu
et al. (2019) except for the use of tags instead of
factors to identify terms (similar to Ailem et al.
(2021).

Since a source sentence can potentially have any
number of source terms, the training data needs to
contain source sentences with different amounts of
annotated terms. The annotation algorithm keeps
track of how many sentences with n terms have
been annotated so far, and tries to ensure that the
sentence counts approximate a geometric series,
where the amount of sentences gets halved for ev-
ery extra term. For instance, the annotated corpus
for en-cs contains 1,353,810 sentences with one
term, 676,895 sentences with two terms, 338,414
sentences with three terms and so forth. The jus-
tification for the ratio is that most sentences will
contain only few terms, so the lower counts should
be emphasized in training.

4 Observations on the shared task

This year’s terminology task differs in from real-
world use of terminology in machine translation in
two important aspects:

1. Source terms have been unambiguously iden-
tified.

2. Target terms are specified in an already in-
flected form. This inflected form has been
extracted from a reference translation, and
therefore has a high probability of being a
correct form to use in a translation.

In actual use cases, the NMT system would have
to identify the source terms based on a lemma form
provided in a term base, and only the lemma form

of the target term would be available. The probabil-
ity of the lemma term occurring as such in a correct
translation is much lower than for the inflected
term from a reference translation. The shared task
is therefore much easier than the real-world task of
translating with a term base.

Due to the use of inflected terms, the shared
task also favours soft constraint models where the
model is trained on surface forms of terms in-
stead of lemma forms. Because of this, the mod-
els we have submitted for the shared task all use
surface forms of the terms. However, this will in-
duce the models to learn a simple copy behaviour
(Dinu et al., 2019), instead of the more desirable
copy-and-inflect behaviour (Bergmanis and Pinnis,
2021). In our OPUS-CAT production models, we
intend to use lemma-based constraints, since we
expect them to perform better in real-world sce-
narios, especially with morphologically complex
target languages.

5 Models

Five different models were trained for each lan-
guage pair. All of the models were trained with
Marian (Junczys-Dowmunt et al., 2018) using
the transformer-big model architecture (Vaswani
et al., 2017). For each language pair, a combined
SentencePiece (Kudo and Richardson, 2018) vo-
cabulary (32,000 symbols, out of which ten sym-
bols were reserved as potential term tags by using
the user-defined symbol functionality of Sentence-
Piece) was trained and used for both source and
target languages. As transformer-big models are
costly to train, a single base model was trained for
each language pair using just the filtered corpus,
and the base model was then fine-tuned with data
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that had been augmented with the terminological
annotations. Another motivation for using fine-
tuning is the reuse of models: OPUS-CAT uses
the OPUS-MT model collection that contains thou-
sands of pre-trained models, and fine-tuning those
models to support the use of terminology instead
of training terminology models from scratch saves
time and resources.

Yet another advantage of fine-tuning is that it
makes it possible to quickly test the performance of
different term annotation schemes. As mentioned,
we experimented with the append and replace
methods. For both methods, two models were
trained, one where the annotated sentences were
combined with the unannotated sentences when
fine-tuning (add), and one where the unannotated
sentences were omitted (omit). The expectation is
that the omit model will specialize better to term
translation, while the add model will retain better
generic translation capabilities. In production use it
may be best to use a specialized term model when
terms are detected in the source sentence, and re-
vert back to a generic model when no terms are
detected.

The zh-en base model was trained until conver-
gence (chrF validation metric did not improve for
20 consecutive validation steps). For the en-cs and
de-en base models the training did not have time
to converge before the deadline for shared task sub-
mission, but both models were trained sufficiently
long to obtain competitive evaluation scores (on
par with scores published for existing OPUS-MT
models). The terminology models were trained by
fine-tuning the base model with annotated data for
one epoch.

When translating with a terminology model and
a term base, a script is used to identify terms in
the source text and to annotate the terms in the
source sentence before translation, using the same
annotation scheme as in the training data. Since the
target side of the training data was not modified,
the translation does not need to be post-processed.

5.1 Model n-best combination and reranking

For the submission to the shared task, we combine
the outputs of the different types of models using a
simple n-best reranking method (this is referred to
as the mixture model in the tables):

1. An n-best list of size 8 is generated for each
source sentence by each model.

2. Term occurrences are counted for each trans-
lation in the n-best lists.

3. The translation containing the most terms in
all n-best lists is chosen as the final translation.

4. If translations from different models have the
same amount of terms, the final translation is
picked based on the following model hierar-
chy: base, append, replace, append-omit,
replace-omit (the assumption is that the qual-
ity is best for the base model and worst for the
omit models).

5. If there are multiple translations with the same
amount of terms in a model’s n-best list, trans-
lations higher in the n-best list are preferred.

The motivation for using this reranking method
is that since the models use different approaches
to generate translations, their combined n-best lists
will be diverse, which increases the probability of
finding a translation with correct terms. Also, in
general it makes sense to rerank n-best lists in termi-
nology translation, since the criteria for reranking is
so clear (the highest amount of term occurrences).

6 Evaluation

6.1 Evaluation methods

General model performance was evaluated with
BLEU and chrF metrics using sacreBLEU (Post,
2018).

Terminological correctness was evaluated by
simply counting what percentage of the specified
terms actually occur in the translation in the surface
form in which they are defined. This naive method
ignores two important issues: the correct placement
of the term within the translation, and the match-
ing of all other inflected forms of the term. Alam
et al. (2021a) introduces more sophisticated term
accuracy metrics to alleviate these issues, but we
decided against applying them. Since we use eval-
uation mainly for sanity checking soft constraint
models, which generally place terms correctly (and
do not place terms at all if no plausible position is
found for them), evaluating the correct placement is
not crucial. Likewise, matching all inflected forms
is not crucial in the context of this shared task, since
the terminology is provided in an already inflected
form, and our models have been trained with sur-
face term annotations, and will likely have learned
to copy the single inflected form provided to them.
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DE-EN flores-dev wmt13 wmt16 wmt18 wmt20
base 37.6/64.7 32.4/59.1 34.7/61.0 32.5/58.6 23.3/51.6
append 37.6/64.6 32.4/58.9 34.5/60.9 32.5/58.5 23.0/51.6
append-omit 37.1/64.5 32.3/59.0 34.5/60.9 32.6/58.7 21.8/49.9
replace 37.6/64.6 32.1/58.7 34.3/60.7 32.3/58.4 23.5/51.8
replace-omit 37.2/64.5 32.2/58.9 34.2/60.7 32.5/58.6 22.0/50.4

ZH-EN flores wmt20 wmt21 wmt22
base 25.9/55.8 25.7/55.7 20.4/50.2 18.6/48.6
append 27.2/56.7 27.8/57.3 22.2/51.7 19.9/49.9
append-omit 26.8/56.2 27.0/56.5 21.6/51.0 19.3/49.2
replace 27.0/56.6 27.7/57.1 22.2/51.8 19.5/49.6
replace-omit 26.9/56.3 27.0/56.6 21.6/51.1 19.2/49.1

EN-CS flores wmt13 wmt16 wmt18 wmt20
base 34.1/60.6 27.0/53.5 29.3/56.6 24.2/52.3 20.5/50.4
append 33.4/60.1 26.8/53.3 29.2/56.5 23.8/51.9 20.6/50.4
append-omit 33.6/60.3 27.0/53.3 29.0/56.3 24.0/52.0 19.7/49.4
replace 33.5/60.3 26.8/53.4 29.2/56.5 24.1/52.1 20.4/50.2
replace-omit 33.6/60.2 26.8/53.2 29.0/56.2 23.9/51.9 20.2/49.7

Table 3: General translation performance measured as BLEU/chrF. Note that the input to the term models was not
annotated with terms when translating these test sets, they translated the same unannotated input as the base model.
Therefore it is to be expected that the term models perform worse in this evaluation.

Exact term
accuracy

DE-EN base 0.618
(100) append 0.911

append-omit 0.854
replace 0.886
replace-omit 0.902

ZH-EN base 0.367
(100) append 0.933

append-omit 0.933
replace 0.900
replace-omit 0.967

EN-CS base 0.496
(100) append 0.837

append-omit 0.756
replace 0.829
replace-omit 0.772

Table 4: Term translation accuracy with the shared task
dev set (sentence count is in parentheses under the lan-
guage pair). In this scenario, the terms have been an-
notated to the input of the term models, and the term
models perform better than the base model, as is to be
expected.

6.2 Evaluation data

Models were evaluated against a selection of test
sets allowed for the constrained track of WMT23
(see table 3 for results). Terminological correctness
was evaluated using the development sets provided
in the shared task (see table 4 for results). As
the shared task development sets were quite small,
we also created artificial terminology test sets for
each language pair from the constrained track test
sets, using the same annotation script that was used
to annotate the training data (we did not use pre-
existing terminologically annotated corpora due to
the constrained track restrictions). Aligned noun
and verb phrase chunks were identified in the test
set sentences, and converted into sentence-level
dictionaries similar to those in the shared task de-
velopment sets (see table 5 for results).

Most NMT models trained on parallel data will
exhibit some degree of copy behaviour, since
source texts often contain target language words
(this is especially common when the target lan-
guage is English, due to its dominant position as
a world language). Therefore it is plausible that
the base models are already capable of copying
target terms injected into the source sentence to the
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DE-EN Exact term BLEU/
(6550) accuracy chrF
base 0.732 42.5/65.9
append 0.973 46.8/69.2
append-omit 0.942 46.9/69.2
replace 0.977 46.7/69.2
replace-omit 0.958 46.8/69.2
mixture 0.997 46.4/69.1
base-term 0.945 44.3/67.9

ZH-EN Exact term BLEU/
(5687) accuracy chrF
base 0.656 22.9/53.1
append 0.949 26.1/55.9
append-omit 0.899 24.9/54.8
replace 0.940 25.9/55.9
replace-omit 0.892 25.0/55.0
mixture 0.985 26.1/56.2
base-term 0.884 22.7/53.6

EN-CS Exact term BLEU/
(8204) accuracy chrF
base 0.651 28.3/55.5
append 0.902 31.4/58.4
append-omit 0.803 30.2/57.3
replace 0.909 31.2/58.3
replace-omit 0.861 30.2/57.6
mixture 0.959 32.0/59.0
base-term 0.827 29.0/56.8

Table 5: Term translation accuracy with the artificial
term test set (test set sentence count is in parentheses
under the language pair). Note that mixture will al-
ways have the best term accuracy, since it combines the
output of other models based on term accuracy. Target
terms have been added to the input for all models expect
base. base-term is a base model translating input where
source terms have been replaced with target terms.

translation. To determine the extent of this innate
copying ability of the base model and the actual
improvement brought by fine-tuning, a separate
base-term test set was created from the artificial
term test set by replacing the source terms in the
source sentences with corresponding target terms.

6.3 Interpretation of the evaluation results

Results of the evaluation mostly conform to ex-
pectations. All soft constraint models outperform
the base model in term translation, with the ap-
pend and replace models performing best. This is

somewhat surprising, since the append-omit and
replace-omit models were expected to specialize
better to term translation.

It is also surprising that the general translation
quality of the soft constraint models is comparable
to that of the base models. Strangely, the zh-en
soft constraint models clearly outperform the base
model even in general translation. This may be due
to the zh-en base model converging early, after only
6 epochs of training. Still, it is counter-intuitive that
fine-tuning with the small omit data sets consist-
ing only of annotated sentences should noticeably
improve general translation quality.

The results also confirm that the base models are
quite capable of copying exact terms from the input
sentence into the translation, especially the de-en
model. However, injecting terms directly into the
base model input seems to noticeably lower the
overall translation quality.

7 Conclusion

Our submission for the shared task confirms that
soft terminology constraint methods work with a
variety of language pairs. We also demonstrate that
soft constraint models can be created by fine-tuning
base transformer models, which speeds up training
and the investigation of different soft constraint
methods and parameters. The results also indicate
that fine-tuned soft constraint models have accept-
able general translation quality, and do not require
a back-off base model in production use.

Limitations

The soft constraint methods discussed assume
terms are inflected, which is not usually the case
when actually working with term bases. This lim-
its the usability of the methods, especially with
morphologically complex target languages. How-
ever, the annotation script also supports the use
of lemma forms of terms. The reranking method
used to produce the best term accuracy is compu-
tationally heavy, as it requires decoding with five
separate transformer-big models.
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