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Abstract
The SKIM team’s submission used a stan-
dard procedure to build ensemble Transformer
models, including base-model training, back-
translation of base models for data augmen-
tation, and retraining of several final models
using back-translated training data. Each fi-
nal model had its own architecture and con-
figuration, including up to 10.5B parameters,
and substituted self- and cross-sublayers in
the decoder with a cross+self-attention sub-
layer (Peitz et al., 2019). We selected the best
candidate from a large candidate pool, namely
70 translations generated from 13 distinct mod-
els for each sentence, using an MBR reranking
method using COMET and COMET-QE (Fer-
nandes et al., 2022). We also applied data aug-
mentation and selection techniques to the train-
ing data of the Transformer models.

1 Introduction

This paper provides a system description of submis-
sions by our team, called SKIM1, at WMT-2023.
We took part in English to Japanese (En→Ja) and
Japanese to English (Ja→En) General Machine
Translation tracks (Kocmi et al., 2023). We specif-
ically participated in the constrained track, which
places restrictions on the available data and pre-
trained models.

The trial of this year’s submissions is a reranking
part. Our submission system consists of multiple
translation models, followed by a reranking mod-
ule (Kobayashi, 2018) based on COMET (Rei et al.,
2022a) and COMET-QE (Rei et al., 2021). This
reranking approach serves to identify and select
high-quality translations from the hypothesis can-
didate set generated by multiple translation models.
Among the Transformer-based translation models,
we also incorporated a large Transformer model
with 10.5B parameters. We also applied data aug-
mentation techniques based on our previous year’s

1The team name is an anagram of the first letters of the
authors’ last names.
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Figure 1: System overview.

system (Morishita et al., 2022b). We briefly de-
scribe the system overview, including the experi-
mental results that could not be submitted.

2 System Overview

An overview of our submission system is shown
in Figure 1. Following the development process
used for last year’s system (Morishita et al., 2022b),
we used Transformer (Vaswani et al., 2017) as the
model architecture and conducted pre-training and
fine-tuning. In the pre-training phase, we used
both a synthetic dataset created by back transla-
tion (Sennrich et al., 2016) and the provided bi-
text dataset. Here, we refer to the target-to-source
translation model to generate this synthetic dataset
as the initial translation model. Furthermore, we
conducted fine-tuning on the translation models
derived from pre-training using high-quality bitext
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Initial Translation Model

Subword Size 32,000
Architecture Transformer (big) with FFN size

of 4,096
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3
Gradient Clip 1.0
Batch Size 1,280,000 tokens
Number of Updates 50,000 steps
Averaging Save a checkpoint every 200 steps

and average the last eight
Implementation fairseq (Ott et al., 2019)

Pre-training Configuration

Subword Size 64,000
Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Inverse square root decay
Warmup Steps 4,000
Max Learning Rate 0.001
Dropout 0.3 / 0.1
Gradient Clip 0.1 / 1.0
Batch Size 1,024,000 / 64,000 tokens
Max. Num. of Updates 60,000 / 100,000 (stoped at

64,000)
Averaging Save a checkpoint every 2,000

steps and average the last ten
Implementation fairseq (Ott et al., 2019)

Fine-tuning Configuration

Subword Size Identical to Pre-training Configu-
ration

Architecture (See Table 4)
Optimizer Adam (β1 = 0.9, β2 =

0.98, ϵ = 1× 10−8)
Learning Rate Schedule Fixed
Warmup Steps N/A
Max Learning Rate 0.00001
Dropout 0.3 / 0.1
Gradient Clip 1.0
Batch Size 16,000 / 14,400 tokens
Number of Updates 400 / 200
Averaging Save a checkpoint every ten steps

and average the last ten
Implementation fairseq (Ott et al., 2019)

Table 1: List of hyper-parameters. We used the ini-
tial translation model for creating synthetic data, pre-
training configuration to construct pre-training models
described in Section 4.2, and fine-tuning configuration
to construct models for submission. Note that we used
slightly different settings for 10.5B models in a few pa-
rameters. We show their settings at the righthand side
of the slash mark (/). We used several different model
configurations for ensembling. See Table 4 for more
details.

datasets (i.e., development data provided by the
organizers). When developing last year’s submis-

Corpus w/o Filtering w/Filtering

JParaCrawl v3.0 25.7 M 25.0 M
WikiMatrix 3.89 M 3.64 M
JESC 2.80 M 2.57 M
Wiki Titles v3 757 K 327 K
KFTT 440 K 371 K
TED Talks 242 K 224 K
NewsCommentary v18 3.8 K 3.7 K

Table 2: Number of sentence pairs in bitext corpus.

sion system, we found that fine-tuning with clean
data enhanced translation quality more effectively
than domain adaptation. Therefore, we used a sim-
ilar fine-tuning approach for this year’s submission
system. By using these datasets, we trained mul-
tiple Transformer-based translation models with
heterogeneous configurations. During the infer-
ence phase, we translated the source sentences us-
ing these translation models individually and se-
lected the final translation results using a subse-
quent reranking process. As reranking, we tried
two methods: one used COMET-QE and the other
used COMET-MBR (Fernandes et al., 2022) ex-
tended to the outputs of multiple models.

3 Dataset Construction

3.1 Provided Data

Bitext Corpus We used all the provided bi-
text corpora: JParaCrawl v3.0 (Morishita et al.,
2022a), News Commentary v18, Wiki Titles v3,
WikiMatrix, Japanese-English Subtitle Corpus
(JESC) (Pryzant et al., 2018), The Kyoto Free
Translation Task (KFTT) Corpus (Neubig, 2011),
and TED Talks (Cettolo et al., 2012). We filtered
out the potentially noisy pairs using the straightfor-
ward parallel corpus filtering methods, just as we
did with last year’s system (Morishita et al., 2022b).
Table 2 shows the size of each dataset with/without
filtering. Compared to the previous year, the orga-
nizers updated the NewsCommentary, resulting in
an increase of 1.8 K sentences.

Monolingual Corpus We also used the follow-
ing provided monolingual data: News Crawl, News
Commentary, and Common Crawl. We back-
translated the monolingual sentences using a target-
to-source model (i.e., an initial translation model)
trained only with the provided bitext dataset, as de-
scribed in Section 3.2, and used them as synthetic
data (Sennrich et al., 2016).
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#sent. pairs #subwords (JA) #subwords (EN)

En→Ja 587 M 12.9 B 15.0 B
Ja→En 681 M 17.2 B 16.7 B

Table 3: Statistics of synthetic data used for pre-training.

3.2 Building Pre-Training Data
Synthetic Data Construction To augment the
training data, we constructed synthetic data by ap-
plying the initial translation model trained with
bitext to the monolingual data. As a preprocessing
step, we truecased2 both the bitext and monolin-
gual data. We then tokenized the data into sub-
words using the Sentencepiece tool (Kudo
and Richardson, 2018) with the unigram language
model option.

We set the vocabulary size to 64,000, the same
as the previous year’s submission. To integrate in-
sights from the method to create vocabulary for re-
cent large-language models (Touvron et al., 2023),
we activated the “byte_fallback” and “split_digits”
options. Through preliminary experiments, we
confirmed that activating these options leads to
enhanced translation performance. As our ini-
tial translation model, we used the identical ini-
tial translation model we used for last year’s sub-
mission system (Morishita et al., 2022b). The de-
tailed hyperparameters are described in the initial
translation model section of Table 1. Finally, we
respectively translated 3.3 B (English) and 1.4B
(Japanese) monolingual sentences.

Data Cleaning For both the provided bitext and
synthetic data, we carried out cleaning based on
a combination of sentence embeddings and hand-
crafted rules.

For both the bitext and synthetic data, we re-
moved the too-long sentences (>500 characters)
and using the langid3 toolkit, removed the sen-
tences that were identified as not being written in
English or Japanese.

For the synthetic data, we further applied a sen-
tence embedding-based filtering approach. We took
advantage of LaBSE (Feng et al., 2022) to embed
the Japanese and English sentences into the same
embedding space. We then scored and ranked the
parallel sentence pairs based on the cosine similar-
ity of their sentence embeddings. We subsequently

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
recaser/truecase.perl

3https://github.com/saffsd/langid.py

filtered out the following items from the synthetic
data:

• Duplicated sentence pairs
• Sentences with over 150 words4 or single words

with over 40 characters
• Sentences where the ratio between the word and

the character count is > 12
• Sentences that contain invalid Unicode charac-

ters
• Sentence pairs where the source/target word ratio

exceeds 4
• sentence pairs where the source/target length ra-

tio exceeds 6
• sentence pairs where the source and target sen-

tences are identical
• sentence pairs where the cosine similarity is

greater than 0.965

Finally, we respectively selected the top 587M
and 681M (approximately) sentences, respectively,
from the translated 1.4 B and 3.3 B monolingual
sentences as the En→Ja and Ja→En synthetic data
for the rank orders. Table 3 shows the statistics of
the synthetic data used for our pre-training.

3.3 Fine-Tuning Data
As mentioned in Section 2, during the development
of last year’s submission system, we found that
fine-tuning the model with clean data was more
effective for improving translation quality than do-
main adaptation. Following this finding, we used
the WMT’20 test set, WMT’20 development set,
WMT’21 test set and WMT’22 test set as clean data
for fine-tuning. The WMT’20 test and development
sets were all used as clean data. However, for the
WMT’21 and WMT’22 test sets, only the oppo-
site language direction data were used (i.e., only
Ja→En data were used as clean data for the En→Ja
models) because these data were used for devel-
opment and evaluation. The clean data included
9,002 sentences for En→Ja and 9,026 sentences
for Ja→En.

4 Primary Translation Module

We trained several Transformer models for the
reranking in the decoding phase. We describe the

4We tokenized the Japanese sentences using MeCab (Kudo,
2006) with the IPA dictionary. Note that this tokenization is
for this cleaning purpose only.

5We found that sentence pairs with high cosine similarities
can be noisy; for example, the source and target sentences
are sometimes identical. Thus, we removed them from the
training data.

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/truecase.perl
https://github.com/saffsd/langid.py
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details of the models in this section. Furthermore,
alongside the newly trained models, we reused the
primary translation models from the previous year’s
submission system (Morishita et al., 2022b).

4.1 Model Configuration

We independently trained models with heteroge-
neous model configurations. Our configuration
has several notable characteristics: a cross+self-
attention mechanism and a large number of param-
eters (i.e., 10.5B). In the following sections, we
describe the details of the configurations.

Cross+Self-Attention Mechanism We intro-
duced a cross+self-attention mechanism (Peitz
et al., 2019) to the Transformer decoder. This mech-
anism was expected to reduce the model parameters
and provide faster training while maintaining the
translation performance. In this approach, we elim-
inated the decoder’s cross-attention layer and uni-
fied the self-attention and cross-attention into a sin-
gle attention layer. Specifically, the self-attention
layer within the Transformer decoder simultane-
ously performs the cross-attention calculation by
concatenating the output from the encoder’s final
layer to the query and key matrices.

Suppose Q, K, and V are the query, key, and
value matrices, respectively; Henc is the matrix
form of concatenating all the output vectors of the
encoder’s final layer; Wq, Wk, Wv are the weight
matrices for the query, key, and value, respectively;
and dk denotes the dimension of the key matrix. It
is then formulated as follows:

Attention(Q,K, V,Henc) =

softmax

(
QconcatK

T
concat√

dk

)
V ′

Qconcat = (Q⊕Henc)Wq

Kconcat = (K ⊕Henc)Wk

V ′ = VWv

(1)

where ⊕ means concatenating two matrices in this
equation.

Note that cross+self-attention, as well as stan-
dard self-attention, assume Q, K, and V to be
identical matrices, namely, Q = K = V = Hdec,
where Hdec is the matrix form of concatenating
input vectors of the corresponding decoder layer.

10.5B Model As demonstrated in Kaplan et al.
(2020), the performance of neural models improves
as the number of parameters increases. Moreover,

previous WMT shared tasks systems, such as Chen
et al. (2020), achieved improvements in translation
quality using model scaling. Following this insight,
we attempted to scale up the translation model.
Considering the constraints of GPU memory and
training time, we finally configured the model size
to be 10.5B parameters.

We also applied the position encoding meth-
ods used in last year’s submission system (Mor-
ishita et al., 2022b). Namely, in the encoder, we
employed relative position encoding (Shaw et al.,
2018). In the decoder, we used SHAPE (Kiyono
et al., 2021). We specified the maximum shift size
of SHAPE to be 10.

Previous year’s submission models We also
incorporated the transformer models developed
for the previous year’s submission system as the
primary translation module. We introduced the
bottom-to-top (B2T) connection (Takase et al.,
2023) to these models for training stability and
relative position encodings (Shaw et al., 2018) to
improve their generalization ability to unseen sen-
tence lengths during training. For more details,
please refer to (Morishita et al., 2022b).

4.2 Pre-Training

We trained each translation model shown in Table 4
with the filtered bitext and synthetic data described
in Section 3.2. In this phase, we used the pre-
training configuration shown in Table 1.

Following last year’s submission system (Mor-
ishita et al., 2022b), the bitext was upsampled until
it reached to a ratio of 1:1 with the synthetic data.
Moreover, we used the tagged back-translation
technique (Caswell et al., 2019) by adding a special
token ⟨BT⟩ to the beginning of the source sentences
in the synthetic data.

4.3 Fine-Tuning

The fine-tuning data are detailed in Section 3.3, and
the hyperparameters utilized during training are as
described in Table 1.

4.4 Ensemble

We ensembled the fine-tuned models, except for
the 10.5B model, due to the computational resource
limitations. We included the ensembled model and
individual model outputs as the reranking candi-
dates.
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Direction Configuration #Params. Cross+self LN pos. Encoder Decoder

attention Layer dmodel dffn #Heads Layer dmodel dffn #Heads

Both NTT-Base 547M Pre. 9 1024 8192 16 9 1024 8192 16
Both ABCI-Base 622M Pre. 9 1024 16384 16 9 1024 4096 16
Both ABCI-EncBig 2.0B Pre. 12 1024 65536 16 9 1024 8192 16
Both ABCI-EncDeep 736M Pre. 18 1024 8192 16 9 1024 8192 16
Both Failab-EncBig 1.7B Pre. 9 1024 61440 16 9 1024 16384 16
Both Failab-DecBig 1.7B Pre. 9 1024 16384 16 9 1024 61440 16

Both NTT-A 408M Post. 6 1024 8192 16 6 1024 8192 16
Both NTT-B 547M Post. 9 1024 8192 16 9 1024 8192 16
Both NTT-C 622M Post. 9 1024 16384 16 9 1024 4096 16
Both NTT-D 698M Post. 9 1024 16384 16 9 1024 8192 16
En-Ja NTT-E 547M Pre. 9 1024 8192 16 9 1024 8192 16
En-Ja NTT-F 509M ✓ Post. 9 1024 8192 16 9 1024 8192 16
En-Ja NTT-G 551M ✓ Post. 10 1024 8192 16 10 1024 8192 16
Both Failab-LM 10.5B ✓ Pre. 16 4096 16384 32 32 4096 16384 32

Table 4: List of model configurations used by the primary translation module. The upper half of the table shows the
models also used in last year’s submission system (Morishita et al., 2022b), and the lower half shows the models
newly trained this year. dmodel and dffn respectively denote sizes of embedding and feedforward layers. LN pos.
means the position of layer normalization. Post. denotes that layer normalization is applied after the residual
connection. Pre. denotes that layer normalization is performed before the residual connection. ABCI-Base and
NTT-Base were each trained with two different seeds.

5 Reranking

To enhance translation quality, we applied a rerank-
ing process to the candidate set of hypotheses trans-
lated by each model described in Section 4. We
conducted a comparative analysis of the various
methods, as presented in the following sections.

5.1 Methods

The reranking approach was used to obtain the final
output ŷ from C, where C represents the candidate
set generated by multiple translation models for a
given source x.

Quality Estimation (QE) This approach in-
volves scoring the candidates using quality esti-
mation methods (e.g., COMET-QE) and selecting
the one with the highest score, as follows:

ŷ = argmax
c∈C

QE (x, c) . (2)

where, QE(·, ·) is a quality estimation function.

Minimum Bayes Risk (MBR) This method uses
reference-based metrics such as COMET, to yield
the best output as follows (Fernandes et al., 2022);

ŷ = argmax
ci∈C

1

|C|

|C|∑
cj=1

RefMetric (ci, cj) . (3)

where RefMetric(·, ·)6 is a reference-based metric.
Note that MBR uses reference-based metrics but
not reference texts. MBR is applied to the output
of a single model in Fernandes et al. (2022). We
extended this method to the outputs from multiple
models.

MBR after QE (QE → MBR) This approach is
a combination of QE and MBR (Fernandes et al.,
2022). We denoted the top-p samples from set C,
according to the score calculated by the quality
estimation function QE(·, ·), as Ctop-p. Then, MBR
was applied for Ctop-p.

5.2 Post Evaluation

We experimented with the performance of the trans-
lation models and the reranking process. Note that
this experiment was conducted after the primary
system was submitted.

5.2.1 Experimental Setup
We used WMT21-COMET-QE7 and
WMT22-CometKiwi (Rei et al., 2022b)8 for the
QE, and WMT22-COMET-DA9 as the refernece-

6Some reference-based metrics, such as COMET, also use
source x as an input.

7https://unbabel-experimental-models.
s3.amazonaws.com/comet/wmt21/
wmt21-comet-qe-mqm.tar.gz

8https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

9https://huggingface.co/Unbabel/
wmt22-comet-da

https://unbabel-experimental-models.s3.amazonaws.com/comet/wmt21/wmt21-comet-qe-mqm.tar.gz
https://unbabel-experimental-models.s3.amazonaws.com/comet/wmt21/wmt21-comet-qe-mqm.tar.gz
https://unbabel-experimental-models.s3.amazonaws.com/comet/wmt21/wmt21-comet-qe-mqm.tar.gz
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-comet-da
https://huggingface.co/Unbabel/wmt22-comet-da
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Models En→ Ja Ja → En

NT5
single model 8 8
4-models ensemble 1 1
all models ensemble 1 1

NTT
single model 70 40
all models ensemble 10 10

Failab-LM 10 10

Total 100 70

Table 5: Breakdown of candidates for reranking. The
NT5 four-model ensemble consists of ABCI-EncBig,
ABCI-EncDeep, Failab-EncBig, and
Failab-DecBig. The NT5 all-model ensem-
ble consists of NTT-Base (two different seeds),
ABCI-Base (two different seeds), ABCI-EncBig,
ABCI-EncDeep, Failab-EncBig, and
Failab-DecBig. The NTT all-model ensem-
ble consists of NTT-A to NTT-G.

based metric for MBR. WMT22-COMET-DA was
also used as the evaluation metric. The candidate
sets contained 100 hypothesis for En→Ja and 70
for Ja→En. The breakdown of each candidate set
is shown in Table 5.

5.2.2 Reranking Analysis
Table 6 shows the results of the reranking.
Oracle (a) is the upper-bound setting, selecting
the final output by using WMT22-COMET-DA with
reference text (denoted r):

ŷ = argmax
c∈C

WMT22-COMET-DA (c, r) . (4)

Comparing the QE and MBR approaches (f
and g vs. q) showed that MBR achieved
higher performance. As for the QE approach,
WMT21-COMET-QE achieved better performance
than WMT22-CometKiwi in both translation
directions (f vs. g). Therefore, we used
WMT21-COMET-QE for the QE → MBR approach.
The best performance was achieved by the QE →
MBR at smaller p (h, i, j and k) in both translation
directions. Moreover, QE → MBR often achieved
a higher performance than MBR. These results sug-
gest that the poor quality hypothesis in the candi-
dates has a negative impact on MBR reranking.

5.2.3 10.5B Model Analysis
As described in Section 4.1, we trained a large-
scale translation model with 10.5B parameters
(failab-LM). The experimental results showed
that the 10.5B parameters models were inferior to
the best single model. However, when comparing

the loss, we found that the 10.5B parameters mod-
els achieved a lower loss than the other smaller
models. These results might suggest that 10.5B
is overparametrized for sentence-level translation.
For document-level translation, there may be an
opportunity to harness the potential of the large
number of parameters. However, the availability
of document-level parallel corpora for En↔Ja is
limited, highlighting the necessity of expanding the
resources for document-level data.

In studies on large language models (LLMs), sev-
eral papers discuss the scaling laws. For example,
Hoffmann et al. (2022) introduces the optimal num-
ber of tokens with respect to model size, which is
often referred to as the Chinchilla rule in the com-
munity. If we straightforwardly apply this rule to
MT models, the optimal tokens of the 10B parame-
ters MT model are estimated to be 205.1B tokens.
This is much larger than the tokens we used to train
for 10.5B parameter models. Therefore, we posit
that effectively harnessing the 10.5B model may be
possible by increasing both the quantity of training
data and the number of training steps. We could
not investigate this perspective due to the limited
time and computational resources. Thus, we leave
to clarify this perspective for future work.

5.2.4 Effectiveness of applying
cross+self-attntion

In a preliminary experiment, we confirmed
the effectiveness of applying cross+self-attention
by comparing performance with the standard
setup (cascading computation of self- and cross-
attentions) of Transformer encoder-decoder mod-
els. Table 7 shows the results of our preliminary
experiments. As we see, there were no consid-
erable performance degradations when we com-
pared the performance of cross+self-attention mod-
els (NTT-F) with those of standard self-attention
and cross-attention cascading models (NTT-B).

In addition, cross+self-attention models reduce
the computation of cascading self- and cross-
attention into single cross+self-attention. There-
fore, the cross+self-attention models are slightly
faster and require less memory than standard self-
attention and cross-attention cascading models.

6 Submission System

Initially, we planned to submit several versions
of the system, with the highest-scoring system se-
lected as the final version. However, the reranking
process took longer than expected, and we were
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ID Candidates Reranker En→Ja Ja→En
wmt22test wmt23test wmt22test wmt23test

(a) All Oracle 0.9298 0.9136 0.8804 0.8737

(b) Failab-LM - 0.8840 0.8590 0.8127 0.8119
(c) NT5-ensemble - 0.8926 0.8713 0.8269 0.8234
(d) NTT-ensemble - 0.8880 0.8633 0.8215 0.8198
(e) Best Single Model - 0.8937 0.8692 0.8232 0.8198

(f) All WMT21-COMET-QE 0.9085 0.8879 0.8379 0.8345
(g) All WMT22-CometKiwi 0.9049 0.8847 0.8338 0.8329

(h) All QE(Top10%) → MBR 0.9102 0.8905 0.8425 0.8372
(i) All QE(Top20%) → MBR 0.9111 0.8904 0.8437 0.8393
(j) All QE(Top30%) → MBR 0.9111 0.8905 0.8425 0.8394
(k) All QE(Top40%) → MBR 0.9107 0.8903 0.8429 0.8402
(l) All QE(Top50%) → MBR 0.9099 0.8901 0.8431 0.8401
(m) All QE(Top60%) → MBR 0.9096 0.8897 0.8426 0.8401
(n) All QE(Top70%) → MBR 0.9092 0.8897 0.8418 0.8396
(o) All QE(Top80%) → MBR 0.9092 0.8892 0.8411 0.8390
(p) All QE(Top90%) → MBR 0.9088 0.8891 0.8408 0.8389
(q) All MBR 0.9084 0.8890 0.8405 0.8384

Table 6: Post evaluation results. Best Single model (b) represents the highest score achieved by an individual
translation model (not an ensembled model).

Configuration Cross+self #Params. En→Ja
attention wmt22test wmt23test

NTT-B 547M 0.8865 0.8624
NTT-F ✓ 509M 0.8862 0.8612
NTT-G ✓ 551M 0.8862 0.8635

Table 7: Comparison of performance on applying
cross+self-attention compared with the standard setup
(cascading computation of self- and cross-attentions) of
Transformer encoder-decoder models.

unable to submit multiple submissions within the
time limit. Therefore, the system that was actually
submitted system was slightly different from the
one described in this paper, as follows:

• For the En→Ja system, we submitted the re-
sults of the ensembled model of NTT-A to
NTT-G.

• For the Ja→En system, we opted for the
QE(Top 80%) → MBR configuration.

Unlike the post evaluation setting (Section 3.3),
these models were fine-tuned using all of the
WMT’20 test set, the WMT’20 development set,
the WMT’21 test set, and the WMT’22 test set.

7 Conclusion

This paper described our submission system for the
constrained track of the WMT’23 general transla-
tion task. We developed a translation system for
En↔Ja. We perform reranking on the candidates

generated by multiple translation models, which
include a large-scale model with 10.5 billion pa-
rameters. Post evaluation (Section 5.2) confirmed
the limitations of sentence-level translation qual-
ity improvement through model scaling and the
effectiveness of our reranking approach.
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