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Abstract

Neural metrics trained on human evaluations
of MT tend to correlate well with human judg-
ments, but their behavior is not fully under-
stood. In this paper, we perform a controlled
experiment and compare a baseline metric that
has not been trained on human evaluations
(Prism) to a trained version of the same met-
ric (Prism+FT). Surprisingly, we find that
Prism+FT becomes more robust to machine-
translated references, which are a notorious
problem in MT evaluation. This suggests that
the effects of metric training go beyond the in-
tended effect of improving overall correlation
with human judgments.

1 Introduction

While trained evaluation metrics for machine trans-
lation (MT) tend to have a high correlation with
human judgments (Freitag et al., 2022b), they re-
main black boxes, sometimes behaving in unex-
pected ways (Amrhein and Sennrich, 2022; Rei
et al., 2023). This calls into question whether a
metric’s utility can be measured solely by its corre-
lation with human judgments.

In this paper, we intentionally provide MT met-
rics with machine-translated reference translations,
as opposed to human-created references, and inves-
tigate how this factor influences the behavior of
a metric. In MT evaluation research, the human
translators who create reference translations are
usually asked to produce them from scratch, in or-
der to avoid references that are machine-translated
or post-edited (Kocmi et al., 2022). Nevertheless,
traces of MT have been detected in some reference
sets (Kloudová et al., 2021; Akhbardeh et al., 2021;
Kocmi et al., 2022). It is therefore important to
understand how metrics behave under such refer-
ences.

In our experiments, we use a surrogate for real
post-edited references in the form of error-free out-
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Figure 1: Metrics for MT quality have a lower segment-
level correlation with human judgments when provided
with machine-translated references. However, trained
metrics, such as our Prism+FT, become more robust to
the use of machine translations as references.

put by various systems from the WMT 2021 news
translation task (Akhbardeh et al., 2021). Our re-
sults show that there is a stark difference between
trained and non-trained metrics: While trained met-
rics maintain most of their accuracy when provided
with such MT-derived references, non-trained met-
rics exhibit a substantial drop in accuracy.

To corroborate this observation, we perform a
controlled experiment involving Prism (Thompson
and Post, 2020), a metric that is based on a multilin-
gual MT system. The original version of Prism can
be considered non-trained, since it learns from par-
allel sentences without human judgments. We then
fine-tune Prism on a dataset of human judgments,
using a bidirectional pairwise ranking approach.

As expected, the segment-level correlation of
Prism increases during fine-tuning, indicating that
the metric learns to better predict human judg-
ments (Figure 1). Moreover, we find that fine-
tuning narrows the gap in performance between
human-created and machine-translated references.
Our experiment thus indicates that training a metric
on human evaluation data can influence its behavior
in a way that is not captured by global correlation
with human judgments. Code to reproduce our
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findings will be made available.1

To summarize, the paper makes the following
contributions:

• We propose a metric evaluation setup that
intentionally uses machine-translated refer-
ences, and demonstrate that non-trained met-
rics perform poorly in this setup.

• We present an approach for fine-tuning Prism
on human judgments that significantly im-
proves segment-level correlation on unseen
test data.

• We show that fine-tuning Prism on human
judgments makes it more robust to the use
of machine-translated references.

2 Background

2.1 Reference-based Evaluation
Automatic evaluation of MT is often performed
by comparing the system output with one or more
reference translations, using an evaluation metric.
Evaluation metrics can be roughly divided into
trained and non-trained metrics. Trained metrics
receive supervision from human judgments of past
machine translations. For example, Sellam et al.
(2020) and Rei et al. (2020; ‘COMET’) fine-tuned
a pre-trained sentence encoder on such human judg-
ments, using regression or ranking objectives.

Non-trained metrics, on the other hand, rely on
a heuristic to make the comparison. Metrics such
as BLEU (Papineni et al., 2002) and chrF (Popović,
2015) are based on the overlap of words or char-
acters between the system output and the refer-
ence. Thompson and Post (2020) use the perplexity
of a neural sequence-to-sequence model, called
Prism, that has been trained on multilingual MT.
Systematic comparisons of evaluation metrics (Fre-
itag et al., 2022b) have shown that trained metrics
tend to correlate better with human judgments than
non-trained metrics do, especially if the latter are
based on overlap heuristics.

2.2 Quality of Reference Translations
The reliability of reference-based evaluation met-
rics also depends on the quality of the references
they are provided with (Freitag et al., 2021b). A
notorious source of noise in references is transla-
tionese, which is characterized by monotonicity

1https://github.com/amazon-science/
prism-finetuned

with respect to the source sequence and a high
n-gram overlap with system translations (Freitag
et al., 2020). Freitag et al. (2020) have shown that
translationese references cause BLEU scores to be
higher, and the scores are dominated by matches of
common, unspecific n-grams. They find that BLEU
scores under non-translationese references tend to
be lower, but more precise.

Agarwal et al. (2023) observed that post-edited
references for spoken language translation seem to
inflate BLEU scores, but not the scores of COMET.
However, the relationship between metric training
and the quality of reference translations has not
been studied in detail. In this paper, we hypothesize
that robustness to machine-translated references
may partially explain why trained metrics are more
accurate in practice.

3 Experimental Setup

3.1 Measuring Global Correlation

For measuring the overall correlation of a metric
to human judgments, we follow the WMT 2021
metrics task (Freitag et al., 2021b) and use MQM
annotations of submissions to the 2021 WMT news
translation task (Akhbardeh et al., 2021). The eval-
uation data cover two domains, news and TED
talks. Table A5 reports statistics for these data.

We closely replicate the methodology of the
WMT 2021 metrics task. On the segment level, we
report Kendall’s tau coefficient across all segments
and systems; on the system level, we report pair-
wise accuracy (Kocmi et al., 2021), i.e., the ratio of
system pairs that a metric ranks in the same order as
human annotators have. Following the shared task,
we only consider system translations and exclude
human translations from the evaluation. We then
perform perm-both hypothesis tests (Deutsch et al.,
2021) to validate metrics comparisons at α = 0.05.

3.2 Measuring the Effect of
Machine-translated References

In the context of our analysis, we use error-free sys-
tem translations from the WMT 2021 news trans-
lation task as a surrogate for real post-edited ref-
erences. Specifically, we randomly select system
translations that have been annotated according to
the MQM standard and in which no annotator has
marked an error. This approach allows us to sim-
ulate a post-editing process without the cost and
noise incurred by actual post-editing.

https://github.com/amazon-science/prism-finetuned
https://github.com/amazon-science/prism-finetuned
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Source sequence (English)

Face masks are mandatory across the state of California, even in fresh air.

Human-created reference (German)

Gesichtsmasken sind im ganzen Bundesstaat Kalifornien vorgeschrieben, auch im Freien.

Machine-translated reference (German)

Gesichtsmasken sind im gesamten Bundesstaat Kalifornien Pflicht, auch an der frischen Luft.

Figure 2: Example of a machine-translated reference compared to the standard reference created by a human
translator. The machine-translated reference is more literal (an der frischen Luft ‘in fresh air’).

Figure 2 and Appendix F juxtapose some exam-
ples of error-free system translations and the stan-
dard, human-created reference translations. The
former tend to be more literal and more aligned to
the source, both in terms of syntax and content.

It should be noted that when we evaluate a met-
ric in this analysis, we draw from the same set of
systems and human annotations as we do for ex-
tracting the references. We take care to properly
separate the system translations used as a refer-
ence from those that are evaluated based on that
reference.

To calculate segment-level correlation, we sam-
ple a random error-free translation from an unre-
lated system, for each system output.2 To calculate
system-level pairwise accuracy, we use different
sets of references depending on the pair of sys-
tems that is compared. Figure 3 shows that our
approach is comparable to cross-validation. For
every pair of systems that we consider when calcu-
lating the pairwise accuracy of a metric, we select
one reference translation from an unrelated system,
independently per segment. As a consequence, we
use slightly different reference sets for ranking dif-
ferent pairs of systems.

We then compare the accuracy of a metric when
provided with the machine-translated references to
its accuracy when using the standard references.
To ensure comparability, we skip all the segments
where no machine-translated reference is available
(which is either because the segment has not been
part of the annotation study or because annotators
have found an error in every system translation).
The metric accuracies for both refstd and refmt are

2Segment-level correlation is calculated jointly across all
segments and systems, and as a consequence, using different
references to evaluate the translations of different systems
adds some noise to the correlation. However, we expect that
the correlation is dominated by the segment axis and not by the
system axis. Our findings on the segment level are consistent
with our findings on the system level.

refmt
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Figure 3: To measure the effect of machine-translated
references, we use error-free output from other, unre-
lated MT systems as references. For example, when
comparing system A to system B, we use a translation
from either system C, D, etc. as a reference for each
segment.

thus calculated based on a subset of the segments
used to calculate global correlation. Table A5
shows that only for one language pair a substantial
number of segments need to be skipped (Chinese–
English news). For the other language pairs, be-
tween 0% and 4.5% of the segments are skipped.

4 Fine-tuning the Prism Metric

Prism (Thompson and Post, 2020) is a reference-
based evaluation metric that relies on the paraphras-
ing probability between a system translation and a
reference. The probability is estimated by a mul-
tilingual NMT model as a zero-shot translation
direction. The model is expected to prefer mere
copies of the source sequence to more creative para-
phrases, which is especially useful for reference-
based evaluation.

The NMT model uses the reference as a source
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sequence x and the system translation as a hypoth-
esis y, or vice versa. The segment-level score S is
then calculated from token-level log-probabilities:3

S(y|x) = 1

|y|

|y|∑
t=1

log p(yt|yi<t, x).

By default, Prism uses the average of both para-
phrasing directions:

Prism(sys, ref) =
1

2
S(sys|ref) +

1

2
S(ref|sys).

An overall score for a system can then be calculated
as an average over a collection of segments.

4.1 Training Objective
In order to fine-tune Prism, we combine a standard
cross-entropy objective and a bidirectional pairwise
ranking objective.

For the cross-entropy objective, we use the
source sequence (src) and the reference transla-
tion (ref) of the training examples to continue the
cross-entropy training:

Lsrc→ref = −S(ref|src).

Our goal in using this objective is to familiarize
Prism with the segments to which the human judg-
ments refer, and to prevent catastrophic forgetting
during the fine-tuning stage.

In addition, we propose a bidirectional pairwise
ranking objective. In the forward direction, we
train Prism to correctly rank two system transla-
tions (sys+ and sys−), conditioned on the refer-
ence (forward ranking):

Lref→sys = max{0, ϵ− S(sys+|ref)

+ S(sys−|ref)},

where ϵ is a margin value. We add a second rank-
ing loss for the reverse paraphrasing direction, i.e.,
for reconstructing the reference from either of the
system translations (backward ranking):

Lsys→ref = max{0, ϵ− S(ref|sys+)

+ S(ref|sys−)}.

The complete fine-tuning objective is:

L = αLsrc→ref + (
1

2
Lref→sys +

1

2
Lsys→ref),

where α is a scalar to balance the two terms.
Figure 4 is a schematic illustration of the objec-

tives for pre-training, fine-tuning, and inference.
3This score is called H in the original definition. We use S

instead, to avoid confusion with cross-entropy (which is −S).

A. Pre-training

C. Inference ref sysde de

B. Fine-tuning

src refen dede

src ref rude

src refzh de

src refen de

refde de
sys

sys

ref dede
sys

sys

Figure 4: Schematic illustration of the sequences used
for pre-training, fine-tuning, and applying the Prism
model to MT evaluation. Prism has been (A) pre-trained
on multilingual translation to and from 39 languages as
described by Thompson and Post (2020); inference (C)
makes use of the zero-shot paraphrasing capability ac-
quired by the model during pre-training. We add a
fine-tuning stage (B) with data derived from human
evaluations of MT. In this illustration, Prism is fine-
tuned on English–German examples.

4.2 Training Data

For fine-tuning Prism, we use human judgments
of submissions to the 2020 WMT news translation
tasks (Barrault et al., 2020), collected by Freitag
et al. (2021a).4 These annotations are based on the
Multidimensional Quality Metrics (MQM) frame-
work (Lommel et al., 2014) and have been shown
to correlate better with automatic metrics than pre-
vious direct assessments, especially when the eval-
uation concerns high-quality translations (Freitag
et al., 2021a,b). Specifically, we train Prism on hu-
man judgments for English–German and Chinese–
English translations of news. We train a single
model jointly on both language pairs.

To use the human judgments for training on pair-
wise ranking, the direct MQM assessments need to
be converted into relative rankings of translation
pairs. In previous work, direct (non-MQM) assess-

4Submission data are available at https://github.com/
google-research/mt-metrics-eval and the MQM an-
notations are available at https://github.com/google/
wmt-mqm-human-evaluation

https://github.com/google-research/mt-metrics-eval
https://github.com/google-research/mt-metrics-eval
https://github.com/google/wmt-mqm-human-evaluation
https://github.com/google/wmt-mqm-human-evaluation
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ments have been normalized and aggregated across
annotators before being compared (Ma et al., 2019).
Since MQM ratings are known to have low inter-
annotator agreement on the segment level (Freitag
et al., 2021b), we opt for intra-annotator pairing
instead. Specifically, we only pair translations that
have been rated by the same annotator, and we do
not compare MQM scores across annotators. Rel-
ative rankings are created independently for each
annotator and then concatenated. Furthermore, we
only pair translations that have a score difference
greater than 0.1, which would correspond to a mi-
nor fluency or punctuation error. Taken together,
these criteria should ensure there is a noticeable
difference between the quality of two system trans-
lations sys+ and sys− in the eyes of at least one
annotator. We hold out 5000 relative rankings from
the resulting training data as a validation set and
use it to select hyperparameters. Detailed statistics
for the training data are provided in Table A4.

4.3 Implementation Details

The fine-tuning was implemented in Fairseq (Ott
et al., 2019). We start with the original Prism39
model released by Thompson and Post (2020).5

We then fine-tune the model for a single pass over
the training data, using Adam. The initial learning
rate is set to 1e-4 without any warm-up steps. We
use half-precision training and an effective batch
size of 360k tokens. Other settings match the pre-
training setup of Prism.

We set the margin hyperparameter ϵ to 0.1,
and the cross-entropy weight α to 0.1 as well.
The hyperparameters have been selected based
on segment-level correlation on the validation set.
Since we jointly train on two language pairs, we
iterate over batches for each language pair in a
round-robin fashion, upsampling the smaller lan-
guage pair. Fine-tuning takes about one hour on
a p3.8xlarge AWS instance, which has 4 Tesla
V100 GPUs with 16 GB of memory.

5 Results

Effect of fine-tuning Prism Table 1 shows that
fine-tuning Prism has the intended effect: Fine-
tuning Prism on human judgments of machine
translations significantly improves correlation with
human judgments on an unseen test set. The ef-
fect of fine-tuning is especially pronounced for the
English–German and Chinese–English language

5https://data.statmt.org/prism/

EN–DE EN–RU ZH–EN

Prism 19.3 22.4 28.8
Prism+FT 25.3 23.7 31.5

Table 1: In-domain accuracy of Prism on WMT 2021
news translation submissions. We report segment-level
Kendall’s tau correlation to human judgments. Bold
font denotes that the improvement achieved through fine-
tuning is significant with α = 0.05. Note that Prism+FT
has not been fine-tuned on the EN–RU language pair.

EN–DE EN–RU ZH–EN

Prism 24.2 21.9 19.6
Prism+FT 26.9 22.3 21.9

Table 2: Out-of-domain accuracy of Prism on WMT
2021 system translations of TED talks in terms of
segment-level Kendall’s tau. Bold indicates that the
improvement is significant with α = 0.05.

pairs, since the metric was fine-tuned on those
pairs. Interestingly, we also observe positive cross-
lingual transfer to the English–Russian language
pair, which was not seen during fine-tuning. Ta-
ble 2 shows that the positive effect of fine-tuning
extends to the TED Talks domain, even though the
metric was not fine-tuned on this domain.

Effect of using machine-translated references
Table 3 reports the segment-level correlation of
different metrics when using either standard refer-
ences or machine-translated references. Note that
the values for Prism slightly differ from Tables 1
and 2 because this analysis is based on a subset of
the segments. We find that the correlation of met-
rics to human judgments tends to decrease under
machine-translated references. For the Chinese–
English dataset the relative decline is smaller than
average, but is still noticeable for most metrics.

In Table 3, when comparing the non-trained met-
rics (above the horizontal line) to the trained met-
rics (below the line), we observe that the decline in
correlation is smaller for the trained metrics. An
especially interesting comparison is between Prism
and Prism+FT, given that the two metrics differ
only in the training data. Prism+FT is consistently
more robust to machine-translated references than
Prism, indicating that the metric learns to cope
with such references during the fine-tuning stage.

With respect to system-level pairwise accu-
racy (Table 4), we observe a similar trend.

https://data.statmt.org/prism/
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EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 8.4 7.0 (-16.7%) 12.1 11.8 (-2.5%) 15.2 14.8 (-2.6%) 11.9 11.2 (-5.9%)
chrF 11.1 8.3 (-25.2%) 19.3 13.8 (-28.5%) 16.7 15.7 (-6.0%) 15.7 12.6 (-19.7%)
Prism 18.9 18.2 (-3.7%) 22.4 20.6 (-8.0%) 24.2 23.5 (-2.9%) 21.8 20.8 (-4.9%)

Prism+FT 24.9 24.4 (-2.0%) 23.7 22.3 (-5.9%) 26.6 26.8 (0.8%) 25.1 24.5 (-2.3%)
COMET 25.1 24.6 (-2.0%) 27.6 25.4 (-8.0%) 32.1 32.1 (0.0%) 28.3 27.4 (-3.2%)

Table 3: Segment-level correlation of MT metrics when provided with the standard references (refstd) of the WMT21
metrics news subtask (Freitag et al., 2021b), and with machine-translated references (refmt). The percentages
denote the relative change in correlation when falling back to machine-translated references. The trained metrics,
Prism+FT and COMET (wmt21-comet-mqm), have a more favorable relative change than the non-trained metrics,
which indicates higher robustness to machine-translated references.

EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 89.7 74.4 (-17.1%) 70.3 58.2 (-17.2%) 61.5 61.5 (0.0%) 73.8 64.7 (-12.4%)
chrF 87.2 71.8 (-17.7%) 74.7 56.0 (-25.0%) 60.3 56.4 (-6.5%) 74.1 61.4 (-17.1%)
Prism 85.9 73.1 (-14.9%) 83.5 62.6 (-25.0%) 61.5 56.4 (-8.3%) 77.0 64.0 (-16.8%)

Prism+FT 89.7 80.8 (-9.9%) 80.2 61.5 (-23.3%) 61.5 61.5 (0.0%) 77.1 67.9 (-11.9%)
COMET 79.5 84.6 (6.4%) 68.1 65.9 (-3.2%) 60.3 55.1 (-8.6%) 69.3 68.5 (-1.1%)

Table 4: System-level pairwise accuracy of MT metrics when provided with the standard references of the WMT21
metrics news subtask (Freitag et al., 2021b), and with machine-translated references. Again, the trained metrics,
Prism+FT and COMET (wmt21-comet-mqm), tend to be more robust to machine-translated references.

Prism+FT does not show significantly higher pair-
wise accuracy than Prism when using standard ref-
erences, which is explained by the high statisti-
cal variance of the pairwise accuracy metric. But
again, Prism+FT appears more robust to machine-
translated references than Prism. Finally, Ap-
pendix B reports results for the TED talks domain,
where the same patterns can be observed.

Ablation Study We perform an ablation study
to measure the influence to the three terms in the
Prism fine-tuning objective. Appendix A shows
that removing either of the three terms decreases
segment-level correlation. The ablation shows that
the cross-entropy objective has the additional effect
of stabilizing the model: Without cross-entropy,
the average probability scores output by Prism shift
from 0.47 to 0.35 after a single epoch of fine-tuning,
and the BLEU achieved by the Prism translation
model on an unseen test set clearly declines.

6 Related Work

Machine translations as references Popovic
et al. (2016) first investigated the potential of us-

ing post-edited machine translations as references,
finding that post-edited translations stemming from
high-quality systems are better references than
those from low-quality systems. Toral (2019) ar-
gued that post-edited machine translations can be
seen as an exacerbated form of translationese (post-
editese). Combined with the finding of Freitag et al.
(2020) that translationese references are less favor-
able than intentionally paraphrased references, this
suggests that machine translations, even if post-
edited, are a challenge for MT evaluation.

Albrecht and Hwa (2007) propose to train an
evaluation metric using non-annotated translations
of other systems as pseudo-references. They hy-
pothesize that a metric can learn to detect and to
constructively utilize any errors in these references.
Yoshimura et al. (2019) instead use a paraphrase
identifier to filter pseudo-references based on their
paraphrastic similarity to a human-created refer-
ence. Finally, minimum Bayes risk decoding (Ku-
mar and Byrne, 2004) employs pseudo-references
for generating translations, and has been shown to
depend on robust metrics as well (Freitag et al.,
2022a; Amrhein and Sennrich, 2022).
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Training a sequence-to-sequence model on pair-
wise ranking Pairwise ranking has commonly
been used to train SVM (Ye et al., 2007; Duh,
2008; Stanojević and Sima’an, 2014) and neural
network encoders (Guzmán et al., 2015; Dušek
et al., 2019). A more recent approach has been to
fine-tune pre-trained sentence encoders so that the
embedding similarities of two hypotheses and the
reference and/or source are optimized for pairwise
ranking (Rei et al., 2020; Zhang and van Genabith,
2020), in which case the max-margin loss reduces
to a triplet margin loss (Schroff et al., 2015). In this
paper, we do not rely on the similarity of sentence
embeddings but use the perplexity of a sequence-
to-sequence model as a metric.

Since we optimize perplexity given positive
and negative examples, our fine-tuning approach
becomes very similar to contrastive learning for
NMT. Typical applications of contrastive learning
try to eliminate specific translation error types by
creating perturbed versions of the training refer-
ences (Yang et al., 2019; Hwang et al., 2021). A
similar objective has been used for discriminative
re-ranking of translation candidates (Shen et al.,
2004; Yu et al., 2020). In this paper, however, the
goal is not to improve translation output but to train
an evaluation metric on human judgments.

7 Conclusion

We have shown that metrics without supervision by
human judgments, such as BLEU and chrF, tend to
be inaccurate under machine-translated references,
while trained metrics are more robust. In order to
methodically examine this phenomenon, we have
trained the Prism evaluation metric on a dataset
of human judgments. Our experiments show that
fine-tuning improves the segment-level accuracy
of Prism on an unseen test set across multiple lan-
guage pairs and domains, and clearly increases its
robustness to machine-translated references.

One conclusion to draw from our findings is that
post-edited references likely diminish the accuracy
of reference-based metrics and should be avoided.
A second conclusion is that if it cannot be ruled out
that references originate from MT, as is often the
case in practice, trained metrics are to be preferred.
Fine-tuning a metric such as Prism on reference-
based evaluation can thus be seen as a technique
to let the metric make the best out of reference
translations in the wild.

Limitations

Our study is mainly limited by the data we use for
fine-tuning and evaluating Prism. The experiments
are based on three language pairs only. Automatic
MT evaluation is relevant for many more language
pairs and language families, including and maybe
especially so for low-resource settings.

Secondly, it should be mentioned that the ma-
chine translations we use in our analysis have been
generated by systems based on a similar technol-
ogy. Almost all of the systems seem to use the
Transformer architecture, and they have all been
trained on similar data (Akhbardeh et al., 2021).
It is possible that our findings do not generalize
to the evaluation of other varieties of MT, such as
rule-based systems, or to reference-based evalua-
tion metrics that use large language models (Kocmi
and Federmann, 2023).
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A Ablation Study

Variant
Segment-level
Kendall’s tau

Pairwise
accuracy

Magnitude
of scores

BLEU (newstest21)

EN–DE ZH–EN

Prism (no fine-tuning) 23.5 78.7 0.47 25.6 18.7

Prism+FT 26.8 76.7 0.37 23.0 21.0
– without cross-entropy 26.6 74.6 0.35 10.2 9.6
– without forward ranking 26.0 79.2 0.40 21.9 20.1
– without backward ranking 25.6 77.7 0.39 21.1 20.3

Table A1: Ablation study for the proposed fine-tuning objective, based on the in-domain meta-evaluation set-
ting (WMT 2021 news translations). In every row we remove one aspect of the fine-tuning setup. Meta-metrics are
averaged across three language pairs. Magnitude of scores refers to the average segment-level scores predicted by
the Prism model, converted to probability space via 2x.

B Evaluation on TED Talks

EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 13.4 7.1 (-47.0%) 16.0 12.8 (-20.0%) 11.0 9.1 (-17.3%) 13.5 9.7 (-28.2%)
chrF 14.3 7.9 (-44.8%) 18.9 12.8 (-32.3%) 11.4 9.0 (-21.1%) 14.9 9.9 (-33.4%)
Prism 23.6 17.7 (-25.0%) 22.0 17.5 (-20.5%) 18.0 15.9 (-11.7%) 21.2 17.0 (-19.7%)

Prism+FT 26.4 24.2 (-8.3%) 22.2 21.6 (-2.7%) 20.2 19.4 (-4.0%) 22.9 21.7 (-5.2%)
COMET 27.3 24.6 (-9.9%) 25.8 23.2 (-10.1%) 20.8 20.7 (-0.5%) 24.6 22.8 (-7.3%)

Table A2: Segment-level correlation of MT metrics when provided with the standard references and with machine-
translated references. The percentages denote the relative change in correlation when falling back to machine-
translated references.

EN–DE EN–RU ZH–EN Average
refstd refmt refstd refmt refstd refmt refstd refmt

BLEU 66.7 35.9 (-46.2%) 83.5 58.2 (-30.3%) 64.1 65.4 (2.0%) 71.4 53.2 (-25.6%)
chrF 65.4 46.2 (-29.4%) 85.7 53.8 (-37.2%) 61.5 66.7 (8.5%) 70.9 55.6 (-21.6%)
Prism 69.2 44.9 (-35.1%) 82.4 48.4 (-41.3%) 67.9 66.7 (-1.8%) 73.2 53.3 (-27.1%)

Prism+FT 66.7 51.3 (-23.1%) 81.3 61.5 (-24.4%) 62.8 70.5 (12.3%) 70.3 61.1 (-13.0%)
COMET 84.6 53.8 (-36.4%) 78.0 74.7 (-4.2%) 67.9 75.6 (11.3%) 76.8 68.0 (-11.5%)

Table A3: System-level pairwise accuracy of MT metrics when provided with the standard references and with
machine-translated references.
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C Training Data Statistics

Language pair EN–DE ZH–EN

Number of systems (including sets of human translations) 10 10

Number of annotated segments 1 418 2 000
– used for relative rankings 1 411 1 985

Number of annotated system translations 14 110 19 994
– used for relative rankings 14 110 19 850

Number of relative rankings 126 217 164 137
– training split 121 217 159 137
– validation split 5 000 5 000

Table A4: Statistics for the WMT 2020 MQM ratings (Freitag et al., 2021a) and for the relative rankings that we
derive using an intra-annotator pairing approach.

D Meta-Evaluation Data Statistics

News TED Talks

EN–DE EN–RU ZH–EN EN–DE EN–RU ZH–EN

Number of systems (without human) 13 14 13 13 14 13

Number of MQM-annotated segments 527 527 650 529 512 529

Number of segments with machine-translated
reference (on average across system pairs) 518 527 461 517 511 505

Table A5: Statistics for the WMT 2021 MQM ratings (Freitag et al., 2021b) we use for evaluating the metrics.

E Model Hyperparameters

Model N dmodel dffn h Parameters Vocabulary size

Prism (Thompson and Post, 2020) 16 1280 12288 20 745M 64k
wmt21-comet-mqm (Rei et al., 2021) 24 1024 4096 16 581M 250k

Table A6: Hyperparameters of the Transformer-based metrics.
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F Additional Examples of Human-created and Machine-translated References

English–German News Example
Source sequence:
Face masks are mandatory across the state of California, even in fresh air.

Standard reference:
Gesichtsmasken sind im ganzen Bundesstaat Kalifornien vorgeschrieben, auch im Freien.

Randomly sampled error-free system translation (Nemo):
Gesichtsmasken sind im gesamten Bundesstaat Kalifornien Pflicht, auch an der frischen Luft.

Chinese–English News Example
Source sequence:
他已承认，是自己在教堂里点火。

Standard reference:
The parish volunteer has admitted that he had started the fire in the church.

Randomly sampled error-free system translation (metricsystem5):
He has admitted that it was himself who set the fire in the church.

English–German TED Talks Example
Source sequence:
Today I’d like to show you the future of the way we make things.

Standard reference:
Ich möchte Ihnen heute zeigen, wie wir in Zukunft Dinge herstellen werden.

Randomly sampled error-free system translation (Online-W):
Heute möchte ich Ihnen die Zukunft der Art und Weise zeigen, wie wir Dinge herstellen.

Chinese–English TED Talks Example
Source sequence:
今天我想向各位展示未来我们制作东西的方式。

Standard reference:
Today I’d like to show you the ways we make things in the future.

Randomly sampled error-free system translation (metricsystem1):
Today I want to show you how we will make things in the future.


